
Middleware Support for Embedded Software with Multiple

QoS Properties for Ubiquitous Computing Environments

Stephen S. Yau, Yu Wang and Dazhi Huang

Department of Computer Science and Engineering

Arizona State University

Tempe, AZ 85287-5406, USA

{yau, wangyu, dazhi.huang}@asu.edu

Abstract

Ubiquitous application software usually has

multiple QoS requirements, such as situation-

awareness, real-time, and security, which make the
application software development complicated. In

this paper, an approach to supporting multiple QoS

properties in application software using
middleware is presented. Our Reconfigurable

Context-Sensitive Middleware (RCSM), which

provides situation-awareness support to the
application software, is expanded to support more

QoS by using Aspect-Oriented Software

Development techniques. In the expanded RCSM,
each QoS is processed through a set of aspect

components. The application developers specify the
QoS requirements in a specification file, which is in

turn compiled to configure the corresponding

aspect components. Being associated with certain
application objects, the QoS aspect components

enforce the QoS requirements according to the

specification during run-time. In this paper,
security, in addition to situation-awareness, is used

as an example to illustrate our approach.

Keywords: Ubiquitous computing, embedded

software, Reconfigurable Context-Sensitive

Middleware, QoS, Aspect-Oriented Software

Development, situation-awareness, security.

1. Introduction

The vision of ubiquitous computing (ubicomp)

[1] is part of the stimulation for the emergence of

the portable computing devices, such as PDA,

pocket PC, and tablet PC. The application software

residing on these devices often have some QoS

requirements or constraints, such as situation-

awareness, security, and real-time performance.

Situation is a set of past contexts and/or actions of

individual devices relevant to future device actions

[2]. Context is any instantaneous, detectable, and

relevant condition of the environment or the device,

such as time, location, light-intensity, noise-level,

and available bandwidth. Situation-awareness is the

capability of monitoring the context, detecting

situation changes and responding to the changes.

These QoS requirements make the design and

development of ubicomp applications complicated.

The ubicomp systems must have a combination of

the following capabilities: monitor the temporal,

spatial and physical conditions of environment,

adapt to the environment, monitor or even control

the continuous dynamics of the system, satisfy

real-time requirements, and enforce security

constraints.

Middleware has been widely used to support the

application-specific QoS properties in enterprise

networks. By separating the QoS-related part from

the application software and move it to the

middleware layer, the burden of developing the

QoS-related software is alleviated for the

application developer. The middleware approach

has the following three advantages: (1) The

development of application QoS properties is more

efficient and error-proof since application

developers switch from a monolithic ad-hoc

development to a layered systematic development

using middleware services. (2) Maintenance of QoS

aspects of application software is easier due to its

development based on uniform middleware service.

(3) Resources can be more efficiently shared by

multiple applications residing on one device

through middleware.

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

2. Current State of the Art

Although middleware has been

used to support QoS for general

network applications, the current

results are insufficient for ubicomp

applications due to the following

two shortcomings:

First, middleware is rarely

designed for wireless networks.

Most middleware systems are for

enterprise networks, such as TAO

[3] and QuO [4]. TAO [3] focuses

on the real-time aspect and the

real-time requirements in TAO are

represented by pre-defined IDL

interfaces and enforced based on

priority queue in ORB. QuO [4]

provides a toolkit, which includes

a suite of quality description

languages (QDL), compilers, and

library components to ease the

burden of QoS programming.

These two are not suitable for

ubicomp applications in wireless

networks.

Second, most middleware

systems deal with the QoS attributes such as

respond time and throughput. But no QoS

properties, such as situation-awareness and security

are included in these middleware systems. Besides

Tao [3] and Quo [4], these systems include Agilos

[5] and Q-RAM [6]. Agilos [5] focuses on how to

control QoS adaptation in middleware architecture,

and the QoS is specified by fuzzy rules and

membership functions. Q-RAM [6] deals with the

QoS management problems using a resource

allocation model, and the QoS is represented by

resource utility functions.

Our current Reconfigurable Context-Sensitive

Middleware (RCSM) [2,7,8] is capable of

supporting one QoS, situation-awareness, for

application in wireless networks environments.

RCSM is a middleware for ubicomp environments,

and its architecture is shown in Figure 1. RCSM

provides middleware support for:

Situation-awareness: RCSM is capable of

responding to situation changes by activating

appropriate actions.

Ephemeral group management: This service is

under development. RCSM uses situation changes

of a device to manage group collaborations between

the host device and its group devices.

Autonomous coordination for information
dissemination: This service is under development.

RCSM provides information dissemination service

for situation-aware coordination among devices.

Situation-awareness is considered as a new type

of QoS because it represents the capability of

application software to understand and adapt to the

situation changes. With the middleware support

provided by RCSM, application developers can

develop application software with this new QoS

requirement (situation-awareness) more easily and

systematically. A test bed, Smart Classroom [2], is

being constructed to demonstrate our approach in

supporting situation-awareness of application

software using RCSM.

3. Situation-awareness in RCSM

Figure 1. RCSM architecture.

Ad Hoc Networks

Object Request Broker (R-ORB)

[context acquisition and communication management]

Adaptive Object Containers (ADCs)

[situation analysis]

Other QoS

Services

O

P

E

R

A

T

I

N

G

S

Y

S

T

E

M

RCSM

Application Objects

Sensors

Other Services (e.g. group

management, information

dissemination, …)

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

Let us first show how RCSM supports the

development of the software with the situation-

awareness requirement.

The difficulties for an applications having

situation-awareness property are in context

acquisition and situation processing. A

straightforward way of building a situation-aware

application is to put everything together: context

acquisition, situation processing, and utilization of

the situation in the application. All these

functionalities are mixed together and the

application developers have to incorporate all these

aspects in the application software development,

including the non-traditional input acquisition from

sensors and the processing of raw context data.

These difficulties make the development of

situation-aware application software a big

challenge. Moreover, application software

developed using this approach will be difficult to

maintain or reuse due to its complexity.

Our middleware approach is to separate context

acquisition and situation processing from situation-

utilization. We move the context acquisition and

situation processing into the middleware layer so

that application developers can focus on the

application development. Due to the application-

specific nature of the situation-awareness

requirement, the situation-processing component in

the RCSM is also application-specific. To facilitate

application developers to specify situation-

awareness requirements, we have developed a

Situation-Aware Interface Definition Language

(SA-IDL) [2].

Using the SA-IDL compiler, we can

automatically generate a situation-processing

component, Situation-Aware Adaptive object
Container (SA-ADC), corresponding to a

specification file in SA-IDL. We then import this

component into the RCSM to make it a

customizable situation-aware middleware for

processing the application-specific situations.

During runtime, raw context data is collected

periodically by R-ORB [7] and propagated to SA-

ADC for processing, SA-ADC in turn checks if the

situation changes defined in the SA-IDL file occur.

If a situation change occurs, SA-ADC invokes the

appropriate application actions defined in the SA-

IDL file and implemented in application objects.

4. Using Aspect-oriented Method for

Developing Multiple QoS in RCSM

Although our current RCSM supports only one

QoS – situation-awareness, its modular architecture,

as shown in Figure 1, makes it suitable for

expansion to incorporate other QoS properties in the

module of “Other QoS Services”, such as real-time

and security. Each additional QoS property will be

supported by an additional component in expanded

RCSM. In this section, we will show how to use

Aspect-Oriented Software Development (AOSD)

[9-11] to support multiple QoS in our middleware.

Expansion of RCSM to support additional QoS

properties consists following three steps:

Step 1) Model QoS as a property that cut across the

application objects residing on RCSM;

Step 2) Based on the QoS model, expand SA-IDL to

specify multiple QoS constrains;

Step 3) Generate QoS aspect components according

to the QoS specification, which provide runtime

QoS support.

The first step is to model QoS. As shown in

Figure 2, the application software is implemented as

application objects (O1, O2, …, On) that reside on

RCSM. Each object has its own methods, for

instance, O1 has methods m1, m2, etc. A method

O1

m1

m2

On

m1’’

m2’’

O2

m1’

m2’

QoS 1

e.g. situation-awareness

Application Objects

QoS 2

e.g. security

…

…

Figure 2. Application objects and

crosscutting QoS properties.

QoS m

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

may have some QoS constraints, such as situation-

awareness constraint that specifies under which

situation this method is invoked, and security

constraint that specifies the security condition that

should be satisfied before this method is executed.

Methods of different application objects could have

common QoS properties. For instance, method m2,

m2’ and m2’’ have the same security constraint (see

Figure 2). These common QoS constraints should

be model as one aspect. Thus we model one QoS as

an aspect property of application objects that cut

crossing these objects, as depicted in Figure 2.

Specifically, a QoS constraint is associated with a

method of an application object. Using AOSD, we

can efficiently organize the QoS properties in a

uniform framework, or else the properties will be

scattered in each application object and handled in a

scattered and distributed way. The Separation of

Concerns (SoC) discipline is used to organize these

crosscutting QoS properties, such as situation-

awareness, security, and real-time. Thus, we can

develop a QoS at a time, and finally compose an

application that satisfies multiple QoS requirements

by associating various QoS with the application

objects.

In the second step, we expand the SA-IDL based

on the QoS model to a language, called Situation-
Aware Contract Specification Language (SA-CSL),

to specify multiple QoS requirements. SA-CSL has

syntax that specifies the parameters of multiple QoS

properties. Examples of QoS parameters include

situation changes, security conditions, security

policies, real time parameters, etc, as depicted in

Figure 3a. SA-CSL also specifies the association

between the QoS constraints and the application

object methods as shown in Figure 3b. A QoS

property is specified as a set of QoS constraints.

Each QoS constraint is specified separately, and

then it is associated with an application object

method.

The third step is to generate QoS aspect

components to provide runtime QoS support

according to the SA-CSL specification. To address

this, we will develop an SA-CSL compiler. Based

on the SA-CSL specification, the compiler either

generates a set of in-house components, or

associates third-party components with application

objects. Either way, these QoS aspect components

provide specified QoS support to application

software through the methods of associated

application objects during runtime.

This approach is suitable for supporting QoS

whose constraints are enforced at the method level,

i.e., a defined QoS constraint is bound with a

method of an application object. For instance,

situation change is associated with a method of an

application object and this method will be invoked

when this situation change is recognized. As

another example, a security policy is defined as a

constraint associated with all actions to which this

policy is applicable.

It is noted that this approach cannot support QoS

whose constraints are not enforceable at the method

level because this approach requires the application

SecurityConstraint{

 Type-1 name-1; //internal variables

 … …

 Type-n name-n;

 Condition

 [on-satisfying] handler-1

 [on-violation] handler-2

}Constraint_name

RealTimeConstraint {

 Type-1 name-1; //real-time attributes

 … …

 Type-m name-m;

}Constraint_name

Object {

 Type-1 name-1; //object attributes

 … …

 Type-k name-k;

 Method-1(parameter-1, …, parameter-i)

 withSecurityConstraint (Constraint_name-1)

 withRealtimeConstraint (Constraint_name-2)

 …

 Method-j((parameter-1, …, parameter-r)

 withSecurityConstraint (Constraint_name-s)

 withRealtimeConstraint (Constraint_name-t)

}

a. QoS constraints

b. Object methods with QoS constraints

Figure 3. SA-CSL format

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

developers to breakdown the QoS and associate

them with the methods of the application objects.

For instance, availability of an application service

cannot be enforced at the method level, and hence it

cannot be supported by our approach directly.

5. An Example

In this section, we will show how to expand

RCSM to support security.

First, we model security aspect and identify the

elements of a security requirement. In general, the

elements of a security requirement should include

entities, actions, security mechanisms and policies.

Entities are subjects and objects that are involved in

the security management. There are several types of

entities, including subject entities (component,

application, user, device, host, group, network

domain, etc.), resource entities (file, data, message,

CPU, memory, etc.), and security entities (key,

certificate, credential, role, etc.). Entities have

associated actions, which are taken by entities to

interact with other entities, such as sending or

receiving messages, uploading or downloading

files, reading, writing, or executing files. Security

mechanisms are basic security operations that

constitute a specific security solution, such as

encryption, decryption, re-keying method (for

secure group communication), and digest method.

Policies are high-level descriptions of the behavior

of entities.

Second, we use SA-CSL to define these

elements: Entities are defined as objects in SA-

CSL; actions are defined as methods in objects;

security mechanisms are either provided through

system library or defined by developers; policies are

defined as constraints (see Figures 3 and 4), which

include internal variables, the condition formed by

internal variables and handlers that enforce the

security requirements based on the condition.

Figure 5 shows an example of SA-CSL

specification for security. This example illustrates

the following scenario: In a company, employees

can be authorized by their managers and responsible

security officers to access certain classified files

through their PDA. Nobody is allowed to self-

authorize access of a classified file and each

authorization needs to be processed by both the

responsible manager and the responsible security

officer (separation of duty).

Select handler…

Figure 4 Structure of security constraint in SA-CSL

HandlerInternal

Variable

Internal

Variable

…Form

condition
Condition

Handler

SecurityConstraint{

 //identity of operator

 string security_officer;

 string manager;

 //identity of target

 string subordinate;

 assert manager!=subordinate && security_officer

 != subordinate && manager!=security_officer;

 [on violation]

 ViolationHandler.report(security_officer,

 manager, subordinate, “Separation_Of_Duty”);

 } Separation_Of_Duty;

 Object {

…

 string identity(manager);

 //Before performing “authorize action”

 //Separation_Of_Duty constraint will be checked;

 //operator is an instance representing security

 //officer, target is an instance representing

 //subordinate

 authorize (File classified, Employee operator,

 Employee target);

 WithSecurityConstraint(new Separation_Of_Duty

(operator.getIdentity(), identity, target.getIdentity()));

…

 } Employee;

Figure 5. An example of SA-CSL specification for

security.

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

In the constraint specified in Figure 5, internal

variables, security_officer, manager and

subordinate, are checked in a condition expression.

When the condition is violated, the handler,

ViolationHandler, which is a component

implemented by application developers, will report

this violation. When we define the Employee

object, this constraint is bound with authorize

action.

 Third, in the expanded RCSM, we use a Security

Dispatcher (SecDisp) and a set of security handling

components to support the security enforcement.

The security handling components may include

third party security components for encryption,

authentication, etc. The technique that we use to

design SecDisp is similar to Composition Filter

[12]. After application developers finish the

specification for an application, the compilation of

this SA-CSL specification generates a table, which

contains security-constrained actions, the condition

specified in SecurityConstraint and corresponding

handlers. The table is shown below:

Action Condition Handler

_if_true

Handler_if_

false

Employee.

authorize

manager!=

subordinate

&&

security_off

icer !=

subordinate

&& …

Null.

Simply

continue

the

action

Violation

Handler.

Report

… … … …

This table will be used by SecDisp to enforce

security requirements in runtime. The runtime

execution of SecDisp is depicted in Figure 6.

Message m1 means there is a call to authorize

method; m2 means the call to authorize method is

allowed to proceed; and m3 is an invocation of

report method in ViolationHandler. In runtime, if a

message m1 is sent to SecDisp, SecDisp will

evaluate the condition and make decision based on

the result of evaluation. In the example, if the

condition is satisfied, SecDisp will send m2 to

allow the method call; otherwise, SecDisp will send

m3 to invoke the report procedure in

ViolationHandler.

This approach has the following two advantages:

First, the security specification separates security

constraints from application objects so that we can

easily reuse the specification by binding security

constraints with actions in other application objects.

Secondly, in an SA-CSL specification, situation

expressions and security constraints are both bound

with actions defined in the entities so that situation-

awareness and security can be supported

simultaneously.

6. Discussion

In this paper, we have discussed how to use

middleware to support multiple QoS properties for

ubicomp applications. Our current RCSM supports

one QoS, situation-awareness, and we have shown

how to use AOSD to expand our RCSM to support

more QoS properties. We use security aspect as an

example to illustrate our approach.

Currently, we are expanding the RCSM to

include the security aspect and expect to generate

the Security Dispatcher and some basic security

components in near future.

We plan to analyze the factors related to each

QoS properties that affect the performance and

resource consumption, and use the analysis results

to optimize resource consumption and performance.

Additional QoS properties, such as real-time, will

also be considered for the expansion.

Acknowledgement

Security Dispatcher

Employee O2 On

ViolationHandler C2 C

Application objects

Security handling components

…

…

m1 m2

Figure 6. Security dispatcher.

m3

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

This research is partially supported by National

Science Foundation under grant number ANI-

0123980.

References:

[1] M. Weiser, “Some Computer Science Problems in

Ubiquitous Computing”, Comm. ACM, Vol. 36, No. 7,

July 1993, pp. 75-84.

[2] S. S. Yau, Y. Wang, and F. Karim, "Development of

Situation-Aware Application Software for Ubiquitous

Computing Environments", Proc. 26th IEEE Int’l

Computer Software and Applications Conf. (COMPSAC

2002), pp. 233-238, August 26-29, 2002, Oxford, UK.

[3] I. Pyarali, D. Schmidt, and R. Cytron, “Achieving

End-to-End Predictability of the TAO Real-time CORBA

ORB,” Proc. 8th IEEE Real-Time Technology and

Applications Symposium (RTAS 2002), San Jose, CA,

Sept. 2002, pp.13-22.

[4] R. Vanegas, J. Zinky, J. Loyall, D. Karr, R. Schantz

and D. Bakken, “QuO's Runtime support for Quality of

Service in Distributed Objects”, Proc. IFIP Int’l Conf. on

Distributed Systems Platforms and Open Distributed

Processing (Middleware'98), Sept. 1998, pp. 207-224.

[5] B. Li and K. Nahrstedt, “A Control-based Middleware

Framework for Quality of Service Adaptations,” IEEE

Jour. of Selected Areas in Communications, Special Issue

on Service Enabling Platforms, vol. 17, no. 9, Sept. 1999,

pp. 1632–1650.

[6] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek,

“A Resource Allocation Model for QoS Management,”

Proc. IEEE Real-Time Systems Symp, Dec. 1997, pp.

298–307.

[7] S. S. Yau and F. Karim, "Reconfigurable Context-

Sensitive Middleware for ADS Applications in Mobile

Ad-Hoc Network Environments", Proc. 5th Int’l Symp. on

Autonomous Decentralized Systems (ISADS 2001), pp.

319-326, March 26-28, 2001, Dallas, USA.

[8] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S.

Gupta, "Reconfigurable Context-Sensitive Middleware

for Pervasive Computing", IEEE Pervasive Computing,

Vol. 1, No. 3, July-September 2002, pp. 33-40.

[9] J. Gray, T. Bapty, S. Neema and J. Tuck, “Handling

crosscutting constraints in domain-specific modeling,”

Comm. ACM, Vol. 44, No. 10, Oct. 2001, pp. 87 – 93.

[10] K. Lieberherr, D. Orleans and J. Ovlinger, “Aspect-

oriented programming with adaptive methods,” Comm.

ACM, Vol. 44, No. 10, Oct. 2001, pp.39-41.

[11] G. T. Sullivan, “Aspect-oriented programming using

reflection and metaobject protocols,” Comm. ACM, Vol.

44, No.10, Oct. 2001, pp. 95-97.

[12] L. Bergmans and M. Aksit, “Composing

Crosscutting Concerns Using Composition Filters,”

Comm. ACM, Vol. 44, No. 10, Oct. 2001, pp. 51-57

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

