

Abstract

Devices in ubiquitous computing environments are
usually embedded, wearable, and handheld, have
resource constraints, and are all connected to each
other through wireless connections and other comp-
uters possibly through fixed network infrastructures,
such as the Internet. These devices may form
numerous webs of short-range and often low-power
mobile ad hoc networks to exchange information.
Distributed object computing (DOC) middleware
technologies have been successful in promoting high
quality and reusable distributed software for
enterprise-oriented environments. In order to reap the
same benefit in ubiquitous computing environments,
it is important to note that the natural interactions
among distributed objects in ubiquitous computing
environments are quite different due to various
factors, such as bandwidth constraints, unpredictable
device mobility, network topology change, and
context-sensitivity (or situation-awareness) of
application objects. Hence, the interactions among
distributed objects tend to be more spontaneous and
short-lived rather than predictable and long-term. In
this paper, a middleware protocol, RKF, to facilitate
distributed object-based application software to
interact in an ad hoc fashion in ubiquitous computing
environments is presented. RKF addresses both
spontaneous object discovery and context-sensitive
object data exchange. Our experimental results, based
on RKF’s implementation and evaluation inside the
object request broker of our RCSM middleware test
bed, indicate that it is lightweight, has good
performance, and can be easily used in PDA-like
devices.

Keywords: Ubiquitous computing environments,
lightweight middleware protocol, distributed object
computing middleware, context-sensitivity, situation-
awareness, mobile ad hoc networks, Reconfigurable
Context-Sensitive Middleware, context-sensitive
communications.

1. Introduction

A major goal of ubiquitous computing (also known
as pervasive computing and invisible computing) is
to make computing unobtrusive to such a degree that
the enabling technologies essentially become
transparent [1]. A ubiquitous computing environment
can be considered as a collection of embedded,
wearable, and handheld devices, all connected to
each other through wireless connections, possibly
through mobile ad hoc networks. Devices in
ubiquitous computing environments may form
mobile ad hoc networks or connect to fixed
infrastructures. This phenomenon changes the way
distributed application programs discover and interact
with each other. Moreover, some of these application
programs may be context-sensitive in the sense that
they adaptively take different actions in different
contexts [2]. As such, these application programs can
also engage in context-sensitive communications,
where a communication channel is established
spontaneously based on the respective context-
sensitivity of application programs, as oppose to
being client-initiated [3-5].

Distributed object computing (DOC) middleware
technologies have been very effective in addressing
various important challenges in enterprise
environments [6]. Advances in both industry standard
specifications, such as CORBA, COM (or .NET) and
TINA-C, and various research prototypes, such as
TAO [7], have made the DOC middleware
technologies practical to facilitate the development-
time and runtime operations of distributed application
software. In order to make DOC middleware
technologies useful in ubiquitous computing
environments, it is necessary to investigate the way
distributed application software interacts in
ubiquitous computing environments. Without such an
understanding, it may become more difficult to
develop effective DOC middleware technologies for
ubiquitous computing applications. We will briefly
discuss the issues related to the ad hoc distributed
object computing below:

A Lightweight Middleware Protocol for Ad Hoc Distributed Object Computing in
Ubiquitous Computing Environments

Stephen S. Yau and Fariaz Karim
Computer Science and Engineering Department

Arizona State University
Tempe, AZ 85287-5406, USA

{yau, karim}@asu.edu

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

S1) Support for both Context-Sensitive and Client-
Server Inter-Object Communications: Devices in
ubiquitous computing environments may
spontaneously connect with each other through
mobile ad hoc networks. The topologies in mobile ad
hoc networks change dynamically and devices may
not know each other apriori. For this type of
networks, context-sensitive communication paradigm
may be more appropriate due to its support for
spontaneous communications [3]. On the other hand,
a device may connect to a previously known
computer (e.g. a file or a web server) in a fixed
network using client-server interaction.

S2) Context Sensing: To provide context-sensitive
communications [3] to the application software, a
middleware protocol itself needs to “sense” some
contexts. While other components in a middleware
can provide the application-specific “context-
awareness” support [8], a middleware protocol
should be responsible for sensing the
communication-specific contexts, such as arrival of
new devices and their capabilities. In addition, it
should be aware of which application objects can be
activated in the current context.

S3) Spontaneous Object Discovery: Devices in
ubiquitous computing environments often need to
discover new objects whenever new devices join the
network. In some cases, a central server (e.g.
CORBA’s Trading Service) may not exist to facilitate
the discovery process. As such, a middleware
protocol should provide flexible support for
discovering the objects in remote devices without
relying on any third party or central mechanism.

S4) Short-Lived Communication: Many devices have
limited energy since they are battery-powered. To
help the devices prolong their operations, a
middleware protocol should try to use short-lived
communication channels, in which a channel is
closed after data transmission is completed. This
avoids the need for sending back and forth control
messages to keep an existing connection alive.

S5) Efficiency and Lightweight Operation: Unlike in
enterprise environments, devices in ubiquitous
computing environments have diverse capabilities. A
common middleware platform for all these devices
may not be appropriate. A middleware protocol
should be lightweight in the sense that it should be
easily portable to many different types of middleware
implementations without sacrificing performance or
consuming resources beyond the acceptable limit.

Among the existing industry standard middleware
technologies, CORBA’s General Inter-ORB Protocol
(GIOP) and Microsoft’s DCOM protocol are the most
prevalent. Although Java provides the Remote
Method Invocation (RMI) techniques, its
specification does not provide a separate protocol to
the extent what CORBA or COM specifies. The
Simple Object Access Protocol (SOAP), which uses
the Hypertext Transfer Protocol (HTTP) and
Extensible Markup Language (XML) [9], facilitates
the communication of distributed web services. In
addition, SOAP can potentially be used to perform
distributed object computing in a limited fashion.
However, these protocols are primarily more
applicable to fixed networks and stationary devices.
For mobile networks and ubiquitous computing, there
are different middleware approaches [10-17]. For
example, ALICE extends CORBA’s IIOP to allow
object communication for mobile server objects [15],
and LIME [12] and XMIDDLE [14] assume a
different interaction model based on shared tuple
spaces.

In this paper, we will present a lightweight
middleware protocol, called RKF, to facilitate ad hoc
distributed object computing in ubiquitous computing
environments, which may consist of heterogeneous
networking environments, including both mobile and
fixed networks. RKF can also be used as a building
block to develop the communication subsystem of a
distributed object computing middleware, such as an
Object Request Broker (ORB). Based on RKF’s
implementation and evaluation on our
Reconfigurable Context-Sensitive Middleware
(RCSM) [3,8] test bed, our experimental results
indicate that RKF can be easily used in PDA-like
devices with good performance.

2. Major Features of RKF

In this section, we will present RKF to address the
issues discussed before. As shown in Figure 1, RKF
can be used inside a communication subsystem (e.g.
ORB) of a DOC middleware. RKF assumes the
availability of transport layers for unicast and
broadcast functionality. In this section, we will
discuss the major features of RKF: C1, C2 and C3 to
address S1, C4 and C5 to address S2 and S3, and C6
to address S4 and S5.

C1) Interface and Method Pair (IM_PAIR) as
Communication Endpoints: RKF sees an object
interface and each method of this object as a unique
communication endpoint. We call such an endpoint
an IM_PAIR. As such, an object may have many
communication end points. We have chosen this

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

Figure 1: RKF as a building block of a distributed object computing (DOC) middleware for ubiquitous computing environments.

Transport Layer Protocols

DOC Communication Subsystem (e.g. an Object Request Broker)

Unicast and Broadcast APIs

Our RKF Protocol

Sensors
(Optional)

Context-Sensitive Application Objects

Ad Hoc Networks

Client-Server
Application Objects

DOC Middleware Components

O
P
E
R
A
T
I
N
G

S
Y
S
T
E

because it enables an object to associate different
contexts with its different methods, thereby adding
more flexibility.

C2) Incoming and Outgoing IM_PAIRs: Each
IM_PAIR in RKF is considered as either incoming or
outgoing. If a pair is incoming, it means that this
particular IM_PAIR is not invoked until the data
from a compatible and outgoing IM_PAIR is
received first. From client-server point of view, the
outgoing IM_PAIRs are similar to clients that initiate
data communication and incoming IM_PAIRs are
similar to servers that accept data communications.
However, in RKF the incoming IM_PAIRs are not
required to send a reply back to its incoming

IM_PAIR. This allows for both unidirectional and bi-
directional messages between two remote devices.
Since only one end point can initiate data
communication, a valid communication through RKF
requires that when one communication end point is
incoming, the other must be outgoing.

C3) Transparent Inter-Object Data
Communication: RKF supports both client-server
and context-sensitive interaction semantics [3] among
distributed objects. For its context-sensitive
communication capabilities, we have designed RKF
to manage communication between two remote
IM_PAIRs without having them really “see each
other”. This allows RKF to provide communication
transparency to the objects in the sense that an
incoming IM_PAIR does not know where the data is
coming from or an outgoing IM_PAIR does not
know where it is going. This enables RKF to
facilitate the discovery of the best communication

partner and its host device in a mobile ad hoc
network. In this sense, RKF works as an invisible
mediator between two communication end points.
RKF allows client-server messaging for which the
client (i.e. outgoing IM_PAIR) must have the
destination address of the device where the server
(i.e. incoming IM_PAIR) resides.

C4) Context-Sensitive Object Information
Advertisement: As we mentioned earlier, each
IM_PAIR is a communication endpoint in RKF. RKF
uses a broadcast-based technique to advertise the
objects in the host device. However, RKF does not
broadcast information about all the IM_PAIRs all the
time. Instead, it only broadcasts the information

related to only those IM_PAIRs, which are of type
incoming and whose contexts are valid at that
instance of time. This means that RKF only
advertises objects that are ready to be invoked in the
current context. RKF assumes that an object notifies
RKF, possibly using an event-based scheme,
whenever one of this object’s IM_PAIR becomes
suitable to be invoked [3].

C5) Distributed Peer-Matching: Whenever an
instance of RKF receives IM_PAIR broadcast from
other RKFs, it performs a peer matching process to
identify if any of the remote IM_PAIRs could be
valid communication partners of any IM_PAIR in the
host device. This peer matching is done locally in
each device by comparing a list of compatible
IM_PAIRs of the local IM_PAIRs. This enables RKF
to discover compatible peer devices without relying
on an infrastructure or centralized approach.

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

C6) Absence of Separate Communication
Establishment and Termination Messages: After
every peer matching, RKF concludes whether any
remote IM_PAIR is a potential communication
partner of any local IM_PAIR. If so, the RKF on the
outgoing IM_PAIR side invokes the object and its
method corresponding to the local IM_PAIR,
retrieves the method data, and transmits a single
message with the these data to the device in which
the new incoming IM_PAIR partner resides. The
RKF on the incoming IM_PAIR side accepts the
method data as an indication of both connection
establishment and data. This helps RKF to reduce
communication overhead.

3. Operations of RKF
In this section, we will discuss our approach to
developing RKF by explaining how it works as an
integral part of a DOC middleware. RKF cooperates
with other components, such as ORB and object
adapter, inside a DOC middleware to facilitate both
client-server and context-sensitive communications.
The nature of the cooperations are different as shown
in Figures 2(a) and 2(b). In client-server
communications, the cooperation as shown in Figure
2(a) is simple and mainly involve two phases. The
cooperation for context-sensitive communications as
shown in Figure 2(b) involves three phases.

In client-server communication, RKF creates a client-
server communication channel for a pair of remote
objects. As illustrated as the arrowhead A in Figure
2(a), a client object provides RKF with the server
object’s interface and the method of interest (i.e.
IM_PAIR), the actual data, and destination device’s
address. Based on this information, RKF opens a
communication channel with the destination device.
The communication channel is represented as the
dotted arrowhead in Figure 2(a). The RKF on the
destination device then notifies the object adapter
responsible for activating the server object to activate
and invoke the apprropriate method (the arrowhead
B). The server object is not required to send back
data in response. Rather, the server can send some
messages later by using RKF to open a separate
client-server communication channel. This enables
RKF to provide an asynchronous way to address
inter-object communications in mobile ad hoc
networks.

In context-sensitive communication, RKF creates a
context-sensitive communication channel between a
pair of remote objects. Before creating such a
communication channel, RKF first must identify the
local objects that are “ready-to-be-activated” [3] in
the current context. Based on this information, it

must discover remote compatible objects, which
should be ready-to-be-activated in the current
context. As we described before, RKF follows three
phases before setting up a context-sensitive
communication channel between a pair of objects. An
important property of RKF is that it does not need to
rely on any neighbor discovery protocol or any other
network functionality (other than simple broadcast
and unicast) to carry out these phases. These phases
are illustrated in Figure 2(b) and described below:

Phase 1 – Context-Sensitive Object Information
Broadcast: RKF discovers new objects by listening
for a particular type of RKF beacons. Moreover,
RKF does not, by default, initiate an object discovery
when new devices join the network. Instead, RKF
only broadcasts the object information based on the
ready-to-be-activated list of objects. In Figure 2(b),
the P1.1-arrowheads indicate that the context-
analyzers [3] notify RKF of the latest ready-to-
be-activated set. The P1.2-arrowheads indicate
the object information broadcasting process.
Other devices, upon receiving these broadcasted
messages, opportunistically initiate peer-
matching process to determine the suitability of
communication with the device from which the
beacon came from. The contents of these
broadcasted messages change as the ready-to-be-
activated list changes. On the other hand, if the
ready-to-be-activated list becomes empty, then
RKF completely shuts off the broadcasting process
until the list becomes non-empty.

Phase 2 - Peer Matching: In this phase, RKF
discovers the compatible communication endpoints in
remote devices based on the capability C5)
mentioned earlier. Since each communication
channel involves one incoming and one outgoing
IM_PAIR and since an outgoing IM_PAIR initiates
the object data exchange, the corresponding peer
matching takes place on the outgoing IM_PAIR’s
side. The peer matching process is indicated in Figure
2(b) as an oval labeled with P2.1. After a successful
peer match, RKF notifies the object adapter to
activate the object and invoke the method. This part
is shown in Figure 2(b) as the bidirectional
arrowhead P2.2 to illustrate both up-call and down-
calls to and from the object adapter.

Phase 3 – Object Data Exchange: In this phase,
RKF transmits actual object level data from one
object to another after the necessary object
activations are performed and object data are
retrieved. As mentioned earlier, RKF’s object
activation process hides the actual destination or

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

Object Request Broker

Object Adapter

RKF

Server
Object

Method 1

Method n

Object Request Broker

Object Adapter

RKF

A B

(a)

DOC

Middleware

Client
Object

Method 1

Method n

(b)

DOC
Middleware

Interface-Method Pair (IM_PAIR)

Context-
Sensitive
Object

 CS1

Outgoing
Method OM

Other methods

Object Request Broker

Object Adapter

Context-
Sensitive
Object

 CS2

 Object Request Broker

Object Adapter

 RKF

P1.1 P1.1

Context Analyzer Context Analyzer

P1.2

Incoming
Method IM

Other methods

P2.1

P2.2

P3.1

P3.2

 RKF

Interface-Method Pair (IM_PAIR)

Figure 2: RKF’s approach to facilitate (a) client-server and (b) context-sensitive
inter-object communications in ubiquitous computing environments.

source of information following the capability
described in C3). This data exchange part is shown as
the arrowheads P3.1 and P3.2 in Figure 2(b).

4. RKF Implementation and Test Bed

We have implemented RKF for Windows CE 3.0 so
that it can be used and evaluated inside RCSM Object

Request Broker (R-ORB) [3]. As we discussed in the
last section, RKF creates a context-sensitive
communication channel between a pair of objects by
following three phases. However, there may be many
devices in a network, and hence many pairs of
potential objects may exist and require simultaneous
processing of multiple channels. RKF addresses this
need by running the algorithms of these phases in

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

parallel to create and manage multiple context-
sensitive communication channels. For creating
multiple communication channels, RKF has three
components: R-GIOP-DOWN, R-GIOP-UP, and
Context Manager, which all are executed as
independent threads in infinite loops. As shown in
Figure 3, the size of RKF is 5 KB for the
implementation using the Microsoft Embedded C++.

Size of RKF’s Components (in KB)
in Casio E-200 PDAs.

2.5

1.5

1

R-GIOP-DOWN

R-GIOP-UP

Context Manager

Figure 3: RKF’s components. Total size of RKF is 5 KB.

RKF works as an integral part of R-ORB, which is a
lightweight and context-sensitive object request
broker for RCSM. RCSM provides an object-based
middleware framework for context-sensitive
computing in mobile ad hoc networks. R-ORB
provides IM_PAIR registration, context data
acquisition, raw context to structured context
conversion, context data propagation, IM_PAIR
method invocation, broadcast and unicast, and client-
server and context-sensitive communication
management facilities. R-ORB also provides the
Winsock-based APIs for performing broadcast and
unicast functionality. RKF uses these APIs to
perform its broadcast and unicast operations in
Phases 1 and 3.

We have incorporated the RKF in the R-ORB in our
RCSM middleware test bed to evaluate RKF. RCSM
can be configured in several different ways to
provide a suitable infrastructure for ubiquitous
computing experiments. At the time of our
experiments, RCSM provided support for ten
different contexts, including location, noise level,
light intensity, and motion. As such, RCSM provided
us an excellent opportunity to evaluate RKF in a real
context-sensitive ubiquitous computing setting. The
computing platform of our choice was several Casio
E-200 PDAs, because the running versions of RCSM,
including R-ORBs, were already implemented in
these PDAs. Each PDA used an Intel Strong Arm

1110 with 206 MHz clock speed CPU. Each PDA
was equipped with a D-LINK (Air DCF-660W
Compact Flash 802.11b) adapter. These adapters
were configured in mobile ad hoc network mode. As
such, no infrastructure, such as an access point, was
necessary to provide the communication support.

5. Experiments

The goal of our experiments is to study the
performance of RKF for both client-server and
context-sensitive communications. In each
experiment, we programmed the threads of RKF to
perform their operations in 250 MSEC intervals to
coincide with the remaining R-ORB components. We
used multiple PDAs equipped with the D-LINK
adapters to communicate in mobile ad hoc network
modes. Each PDA was programmed with multiple
object-based application programs, exchanging data
with each other using both client-server and context-
sensitive communication channels.

Experiment 1: This experiment corresponds to the
Phase 1 of RKF. Here, we are interested in RKF’s
performance related to its context-sensitive object
information broadcast process. This latency may have
an effect on how fast a DOC middleware can
discover remote objects in mobile ad hoc networks.
We performed the experiment by varying the number
of object interfaces and their methods, and measuring
the latency in 100th of nanoseconds using the
GetthreadTimes API available in Windows CE 3.0.
Figure 4 shows the result of this experiment. It is
important to note that the end-to-end latency, which
includes the wireless signal propagation, is beyond
the control of RKF, and hence it is not shown in the
results.

Experiment 2: This experiment corresponds to the
Phase 2 of RKF. Here, we are interested in the
efficiency of RKF during peer matching process. As
we discussed in the last section, the efficiency may
depend on several factors, such as the number of
currently context-matched IM_PAIRs (in the CMO
POOL), the number of compatible objects per
interface, and the number of remote object beacons
received. We performed several versions of this
experiment by both varying the number of local
interfaces and their methods and changing the ratio of
compatible IM_PAIRs per local IM_PAIR. Figure 5
shows the result with a ratio of 16.

Experiment 3: This experiment corresponds to RKF’s
Phase 3. We performed two different versions of this
experiment. In the first version, we were interested in

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

Figure 4: Context-match event processing latency in RKF during

context-sensitive object information broadcast.

Figure 5: Peer matching latency in RKF for

FRIEND_LIST/IM_PAIR = 16.

RKF’s performance in processing outgoing data for
context-sensitive communications. In the second
version, we measured RKF’s performance for
processing outgoing client-server method data.
Figure 6 shows these results for these two cases. Both
cases show that there is no noticeable performance
penalty for supporting both client-server and context-
sensitive communications.

Experiment 4: This experiment corresponds to RKF’s
Phase 3. Unlike Experiment 3, here we are interested
in measuring RKF’s incoming object-data processing
latency. The first version of this experiment
measured the latency when the data were received
using context-sensitive communication channels.
Figure 7(a) shows the results of this version. In the
second version, we measured the latency during the
processing of incoming client-server messages. The
results are shown in Figure 7(b).

Based on these experimental results, we have found
that RKF performs slightly more efficiently for
client-server communications than for context-

(a)

(b)

Figure 6: Outgoing IM_PAIR data processing latency during (a)

context-sensitive and (b) client-server communications.

sensitive communications. The additional complexity
of context-sensitive communications increases the
latency. However, this increase in latency is
negligible since even in the worst case the latency is
in milliseconds. However, it is noted that since RKF
operates in ubiquitous computing environments, the
higher probability of packet collisions and loss in
wireless environments may reduce the end-to-end
performance of RKF significantly.

6. Discussions

We have presented RKF, which is a lightweight
middleware protocol for ad hoc distributed
computing in ubiquitous computing environments.
RKF can be used as a building block to develop
higher-level communication subsystem of a DOC
middleware. RKF’s support for both client-server and
context-sensitive communications makes it suitable
to be used in heterogeneous networking
environments. Our experimental results, based on the
implementation of RKF in RCSM test bed, indicate
that it can be easily used in PDA-like devices. Future

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

(a)

(b)

Figure 7: Incoming IM_PAIR data processing latency during (a)

context-sensitive and (b) client-server communications.

research along this line includes enhancing RKF to
improve its energy-efficiency so that it can be even
more attractive for energy-constrained devices.

Acknowledgment

This research is supported in part by National
Science Foundation under grant number ANI-
0123980. Microsoft Research donated part of the
equipment used in the experiments. We would like to
thank Deepak Chandrasekar for his assistance during
our experimentation with RKF.

References

[1] M. Weiser, “The Computer for the Twenty-First
Century”, Scientific American, pp. 94-10, Sept 1991.
[2] B. Schilit, N. Adams, and R. Want, “Context-
Aware Computing Applications”, Proc. IEEE
Workshop on Mobile Computing Systems and
Applications, 1994, pp. 85-90.
[3] S. S. Yau and F. Karim, “An Adaptive
Middleware for Context-Sensitive Communications
for Real-Time Applications in Ubiquitous Computing

Environments”, to be published in Real-Time Systems
Journal.
[4] G. Chen and D. Kotz, “A Survey of Context-
Aware Mobile Computing Research”, Technical
Report TR2000-381, Dept. of Computer Science,
Dartmouth College, November 2000.
[5] N. Marmasse and C. Schmandt, “Location-aware
Information Delivery with comMotion”, Lecture
Notes in Computer Science, vol. 1927, 2000, pp. 151-
157.
[6] R. E. Schantz and D. C. Schmidt, “Research
Advances in Middleware for Distributed Systems:
State of the Art”, Communications Systems: State of
the Art, Proc. IFIP World Computer Congress, 2002.
[7] D. C. Schmidt, S. Mungee, S. F.-Gaitan, and A.
Gokhale, “Software Architectures for Reducing
Priority Inversion and Non-Determinism in Real-
Time Object Request Brokers, Real-Time Systems
Journal, 21(1-2), 2001, pp. 77-125.
[8] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S.
Gupta, "Reconfigurable Context-Sensitive
Middleware for Pervasive Computing," IEEE
Pervasive Computing, 1(3), Jul-Sept 2002, pp. 33-40.
[9] World Wide Web Consortium, Simple Object
Access Protocol, version 1.1, May 2000.
[10] L. Capra, W. Emmerich, and C. Mascolo,
“Middleware for Mobile Computing: Awareness vs.
Transparency”, Position Summary, Proc. 8th
Workshop on Hot Topics in Operating Systems, May
2001, pp. 164-169.
[11] T. Zimmerman, “Personal Area Networks”, IBM
Systems Jour., 35(3&4), 1996, pp. 609-617.
[12] A. Murphy, G. Picco, and G.-C. Roman, “LIME:
A Middleware for Physical and Logical Mobility”,
Proc. 21st Int’l Conf. Distributed Computing Systems,
April 2001, pp. 524-533.
[13] IBM Research, TSpaces Project,
http://www.almaden.ibm.com/cs/TSpaces/.
[14] C. Mascolo, L. Capra, S. Zachariadis, and W.
Emmerich,“XMIDDLE: A Data-Sharing Middleware
for Mobile Computing”, Jour. Wireless Personal
Communications, 21(1), April 2002, pp. 77-103.
[15] M. Haahr, R. Cunningham and V. Cahill,
“Supporting CORBA Applications in a Mobile
Environment”, Proc. 5th ACM/IEEE Int’l Conf.
Mobile Computing and Networking (MobiCom 99),
August 1999, pp. 36-47.
[16] IBM Research, Bluedrekar Project,
http://www.research.ibm.com/BlueDrekar/.
[17] M. Roman, C. Hess, R. Cerqueira, A.
Ranganathan, R. H. Campbell, and K. Nahrstedt, “A
Middleware Infrastructure for Active Spaces”, IEEE
Pervasive Computing, 1(4), October-December 2002,
pp. 74-83.

Proceedings of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’03)
0-7695-1928-8/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

