
 
Abstract 

 
Devices in ubiquitous computing environments are 
usually embedded, wearable, and handheld, have 
resource constraints, and are all connected to each 
other through wireless connections and other comp-
uters possibly through fixed network infrastructures, 
such as the Internet. These devices may form 
numerous webs of short-range and often low-power 
mobile ad hoc networks to exchange information. 
Distributed object computing (DOC) middleware 
technologies have been successful in promoting high 
quality and reusable distributed software for 
enterprise-oriented environments. In order to reap the 
same benefit in ubiquitous computing environments, 
it is important to note that the natural interactions 
among distributed objects in ubiquitous computing 
environments are quite different due to various 
factors, such as bandwidth constraints, unpredictable 
device mobility, network topology change, and 
context-sensitivity (or situation-awareness) of 
application objects. Hence, the interactions among 
distributed objects tend to be more spontaneous and 
short-lived rather than predictable and long-term. In 
this paper, a middleware protocol, RKF, to facilitate 
distributed object-based application software to 
interact in an ad hoc fashion in ubiquitous computing 
environments is presented. RKF addresses both 
spontaneous object discovery and context-sensitive 
object data exchange. Our experimental results, based 
on RKF’s implementation and evaluation inside the 
object request broker of our RCSM middleware test 
bed, indicate that it is lightweight, has good 
performance, and can be easily used in PDA-like 
devices. 
 
Keywords: Ubiquitous computing environments, 
lightweight middleware protocol, distributed object 
computing middleware, context-sensitivity, situation-
awareness, mobile ad hoc networks, Reconfigurable 
Context-Sensitive Middleware, context-sensitive 
communications.  
 
 

 
1. Introduction 
 
A major goal of ubiquitous computing (also known 
as pervasive computing and invisible computing) is 
to make computing unobtrusive to such a degree that 
the enabling technologies essentially become 
transparent [1]. A ubiquitous computing environment 
can be considered as a collection of embedded, 
wearable, and handheld devices, all connected to 
each other through wireless connections, possibly 
through mobile ad hoc networks. Devices in 
ubiquitous computing environments may form 
mobile ad hoc networks or connect to fixed 
infrastructures. This phenomenon changes the way 
distributed application programs discover and interact 
with each other. Moreover, some of these application 
programs may be context-sensitive in the sense that 
they adaptively take different actions in different 
contexts [2]. As such, these application programs can 
also engage in context-sensitive communications, 
where a communication channel is established 
spontaneously based on the respective context-
sensitivity of application programs, as oppose to 
being client-initiated [3-5]. 
 
Distributed object computing (DOC) middleware 
technologies have been very effective in addressing 
various important challenges in enterprise 
environments [6]. Advances in both industry standard 
specifications, such as CORBA, COM (or .NET) and 
TINA-C, and various research prototypes, such as 
TAO [7], have made the DOC middleware 
technologies practical to facilitate the development-
time and runtime operations of distributed application 
software. In order to make DOC middleware 
technologies useful in ubiquitous computing 
environments, it is necessary to investigate the way 
distributed application software interacts in 
ubiquitous computing environments. Without such an 
understanding, it may become more difficult to 
develop effective DOC middleware technologies for 
ubiquitous computing applications. We will briefly 
discuss the issues related to the ad hoc distributed 
object computing below: 
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S1) Support for both Context-Sensitive and Client-
Server Inter-Object Communications: Devices in 
ubiquitous computing environments may 
spontaneously connect with each other through 
mobile ad hoc networks. The topologies in mobile ad 
hoc networks change dynamically and devices may 
not know each other apriori. For this type of 
networks, context-sensitive communication paradigm 
may be more appropriate due to its support for 
spontaneous communications [3]. On the other hand, 
a device may connect to a previously known 
computer (e.g. a file or a web server) in a fixed 
network using client-server interaction. 
 
S2) Context Sensing: To provide context-sensitive 
communications [3] to the application software, a 
middleware protocol itself needs to “sense” some 
contexts. While other components in a middleware 
can provide the application-specific “context-
awareness” support [8], a middleware protocol 
should be responsible for sensing the 
communication-specific contexts, such as arrival of 
new devices and their capabilities. In addition, it 
should be aware of which application objects can be 
activated in the current context. 
 
S3) Spontaneous Object Discovery: Devices in 
ubiquitous computing environments often need to 
discover new objects whenever new devices join the 
network. In some cases, a central server (e.g. 
CORBA’s Trading Service) may not exist to facilitate 
the discovery process. As such, a middleware 
protocol should provide flexible support for 
discovering the objects in remote devices without 
relying on any third party or central mechanism.  
 
S4) Short-Lived Communication: Many devices have 
limited energy since they are battery-powered. To 
help the devices prolong their operations, a 
middleware protocol should try to use short-lived 
communication channels, in which a channel is 
closed after data transmission is completed. This 
avoids the need for sending back and forth control 
messages to keep an existing connection alive.  
 
S5) Efficiency and Lightweight Operation: Unlike in 
enterprise environments, devices in ubiquitous 
computing environments have diverse capabilities. A 
common middleware platform for all these devices 
may not be appropriate. A middleware protocol 
should be lightweight in the sense that it should be 
easily portable to many different types of middleware 
implementations without sacrificing performance or 
consuming resources beyond the acceptable limit.  
 

Among the existing industry standard middleware 
technologies, CORBA’s General Inter-ORB Protocol 
(GIOP) and Microsoft’s DCOM protocol are the most 
prevalent. Although Java provides the Remote 
Method Invocation (RMI) techniques, its 
specification does not provide a separate protocol to 
the extent what CORBA or COM specifies. The 
Simple Object Access Protocol (SOAP), which uses 
the Hypertext Transfer Protocol (HTTP) and 
Extensible Markup Language (XML) [9], facilitates 
the communication of distributed web services. In 
addition, SOAP can potentially be used to perform 
distributed object computing in a limited fashion. 
However, these protocols are primarily more 
applicable to fixed networks and stationary devices. 
For mobile networks and ubiquitous computing, there 
are different middleware approaches [10-17]. For 
example, ALICE extends CORBA’s IIOP to allow 
object communication for mobile server objects [15], 
and LIME [12] and XMIDDLE [14] assume a 
different interaction model based on shared tuple 
spaces.  
 
In this paper, we will present a lightweight 
middleware protocol, called RKF, to facilitate ad hoc 
distributed object computing in ubiquitous computing 
environments, which may consist of heterogeneous 
networking environments, including both mobile and 
fixed networks. RKF can also be used as a building 
block to develop the communication subsystem of a 
distributed object computing middleware, such as an 
Object Request Broker (ORB). Based on RKF’s 
implementation and evaluation on our 
Reconfigurable Context-Sensitive Middleware 
(RCSM) [3,8] test bed, our experimental results 
indicate that RKF can be easily used in PDA-like 
devices with good performance. 
 
2. Major Features of RKF 
 
In this section, we will present RKF to address the 
issues discussed before. As shown in Figure 1, RKF 
can be used inside a communication subsystem (e.g. 
ORB) of a DOC middleware. RKF assumes the 
availability of transport layers for unicast and 
broadcast functionality. In this section, we will 
discuss the major features of RKF: C1, C2 and C3 to 
address S1, C4 and C5 to address S2 and S3, and C6 
to address S4 and S5. 
 
C1) Interface and Method Pair (IM_PAIR) as 
Communication Endpoints: RKF sees an object 
interface and each method of this object as a unique 
communication endpoint.  We call such an endpoint 
an IM_PAIR. As such, an object may have many 
communication end points. We have chosen this 
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Figure 1: RKF as a building block of a distributed object computing (DOC) middleware for ubiquitous computing environments. 
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because it enables an object to associate different 
contexts with its different methods, thereby adding 
more flexibility.  
 
C2) Incoming and Outgoing IM_PAIRs: Each 
IM_PAIR in RKF is considered as either incoming or 
outgoing. If a pair is incoming, it means that this 
particular IM_PAIR is not invoked until the data 
from a compatible and outgoing IM_PAIR is 
received first. From client-server point of view, the 
outgoing IM_PAIRs are similar to clients that initiate 
data communication and incoming IM_PAIRs are 
similar to servers that accept data communications. 
However, in RKF the incoming IM_PAIRs are not 
required to send a reply back to its incoming 

IM_PAIR. This allows for both unidirectional and bi-
directional messages between two remote devices. 
Since only one end point can initiate data 
communication, a valid communication through RKF 
requires that when one communication end point is 
incoming, the other must be outgoing.  
 
C3) Transparent Inter-Object Data 
Communication: RKF supports both client-server 
and context-sensitive interaction semantics [3] among 
distributed objects. For its context-sensitive 
communication capabilities, we have designed RKF 
to manage communication between two remote 
IM_PAIRs without having them really “see each 
other”. This allows RKF to provide communication 
transparency to the objects in the sense that an 
incoming IM_PAIR does not know where the data is 
coming from or an outgoing IM_PAIR does not 
know where it is going. This enables RKF to 
facilitate the discovery of the best communication 

partner and its host device in a mobile ad hoc 
network. In this sense, RKF works as an invisible 
mediator between two communication end points. 
RKF allows client-server messaging for which the 
client (i.e. outgoing IM_PAIR) must have the 
destination address of the device where the server 
(i.e. incoming IM_PAIR) resides. 
 
C4) Context-Sensitive Object Information 
Advertisement: As we mentioned earlier, each 
IM_PAIR is a communication endpoint in RKF. RKF 
uses a broadcast-based technique to advertise the 
objects in the host device. However, RKF does not 
broadcast information about all the IM_PAIRs all the 
time. Instead, it only broadcasts the information 

related to only those IM_PAIRs, which are of type 
incoming and whose contexts are valid at that 
instance of time. This means that RKF only 
advertises objects that are ready to be invoked in the 
current context. RKF assumes that an object notifies 
RKF, possibly using an event-based scheme, 
whenever one of this object’s IM_PAIR becomes 
suitable to be invoked [3]. 
 
C5) Distributed Peer-Matching: Whenever an 
instance of RKF receives IM_PAIR broadcast from 
other RKFs, it performs a peer matching process to 
identify if any of the remote IM_PAIRs could be 
valid communication partners of any IM_PAIR in the 
host device. This peer matching is done locally in 
each device by comparing a list of compatible 
IM_PAIRs of the local IM_PAIRs. This enables RKF 
to discover compatible peer devices without relying 
on an infrastructure or centralized approach. 
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C6) Absence of Separate Communication 
Establishment and Termination Messages: After 
every peer matching, RKF concludes whether any 
remote IM_PAIR is a potential communication 
partner of any local IM_PAIR. If so, the RKF on the 
outgoing IM_PAIR side invokes the object and its 
method corresponding to the local IM_PAIR, 
retrieves the method data, and transmits a single 
message with the these data to the device in which 
the new incoming IM_PAIR partner resides. The 
RKF on the incoming IM_PAIR side accepts the 
method data as an indication of both connection 
establishment and data. This helps RKF to reduce 
communication overhead. 
 
3. Operations of RKF 
In this section, we will discuss our approach to 
developing RKF by explaining how it works as an 
integral part of a DOC middleware. RKF cooperates 
with other components, such as ORB and object 
adapter, inside a DOC middleware to facilitate both 
client-server and context-sensitive communications. 
The nature of the cooperations are different as shown 
in Figures 2(a) and 2(b). In client-server 
communications, the cooperation as shown in Figure 
2(a) is simple and mainly involve two phases. The 
cooperation for context-sensitive communications as 
shown in Figure 2(b) involves three phases.  
 
In client-server communication, RKF creates a client-
server communication channel for a pair of remote 
objects. As  illustrated as the arrowhead A in Figure 
2(a), a client object provides RKF with the server 
object’s interface and the method of interest (i.e. 
IM_PAIR), the actual data, and destination device’s 
address. Based on this information, RKF opens a 
communication channel with the destination device. 
The communication channel is represented as the 
dotted arrowhead in Figure 2(a). The RKF on the 
destination device then notifies the object adapter 
responsible for activating the server object to activate 
and invoke the apprropriate method (the arrowhead 
B).  The server object is not required to send back 
data in response. Rather, the server can send some 
messages later by using RKF to open a separate 
client-server communication channel. This enables 
RKF to provide an asynchronous way to address 
inter-object communications in mobile ad hoc 
networks. 
 
In context-sensitive communication, RKF creates a 
context-sensitive communication channel between a 
pair of remote objects. Before creating such a 
communication channel, RKF first must identify the 
local objects that are “ready-to-be-activated” [3] in 
the current context.  Based on this information, it 

must discover remote compatible objects, which 
should be ready-to-be-activated in the current 
context. As we described before, RKF follows three 
phases before setting up a context-sensitive 
communication channel between a pair of objects. An 
important property of RKF is that it does not need to 
rely on any neighbor discovery protocol or any other 
network functionality (other than simple broadcast 
and unicast) to carry out these phases. These phases 
are illustrated in Figure 2(b) and described below:  
 
Phase 1 – Context-Sensitive Object Information 
Broadcast: RKF discovers new objects by listening 
for a particular type of RKF beacons.  Moreover, 
RKF does not, by default, initiate an object discovery 
when new devices join the network. Instead, RKF 
only broadcasts the object information based on the 
ready-to-be-activated list of objects. In Figure 2(b), 
the P1.1-arrowheads indicate that the context-
analyzers [3] notify RKF of the latest ready-to-
be-activated set. The P1.2-arrowheads indicate 
the object information broadcasting process. 
Other devices, upon receiving these broadcasted 
messages, opportunistically initiate peer-
matching process to determine the suitability of 
communication with the device from which the 
beacon came from. The contents of these 
broadcasted messages change as the ready-to-be-
activated list changes. On the other hand, if the 
ready-to-be-activated list becomes empty, then 
RKF completely shuts off the broadcasting process 
until the list becomes non-empty. 
 
Phase 2 - Peer Matching: In this phase, RKF 
discovers the compatible communication endpoints in 
remote devices based on the capability C5) 
mentioned earlier. Since each communication 
channel involves one incoming and one outgoing 
IM_PAIR and since an outgoing IM_PAIR initiates 
the object data exchange, the corresponding peer 
matching takes place on the outgoing IM_PAIR’s 
side. The peer matching process is indicated in Figure 
2(b) as an oval labeled with P2.1. After a successful 
peer match, RKF notifies the object adapter to 
activate the object and invoke the method. This part 
is shown in Figure 2(b) as the bidirectional 
arrowhead P2.2 to illustrate both up-call and down-
calls to and from the object adapter. 
 
Phase 3 – Object Data Exchange: In this phase, 
RKF transmits actual object level data from one 
object to another after the necessary object 
activations are performed and object data are 
retrieved. As mentioned earlier, RKF’s object 
activation process hides the actual destination or 
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Figure 2: RKF’s approach to facilitate (a) client-server and (b) context-sensitive  
inter-object communications in ubiquitous computing environments. 

source of information following the capability 
described in C3). This data exchange part is shown as 
the arrowheads P3.1 and P3.2 in Figure 2(b). 
 
4. RKF Implementation and Test Bed 
 
We have implemented RKF for Windows CE 3.0 so 
that it can be used and evaluated inside RCSM Object 

Request Broker (R-ORB) [3]. As we discussed in the 
last section, RKF creates a context-sensitive 
communication channel between a pair of objects by 
following three phases. However, there may be many 
devices in a network, and hence many pairs of 
potential objects may exist and require simultaneous 
processing of multiple channels. RKF addresses this 
need by running the algorithms of these phases in 
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parallel to create and manage multiple context-
sensitive communication channels. For creating 
multiple communication channels, RKF has three 
components: R-GIOP-DOWN, R-GIOP-UP, and 
Context Manager, which all are executed as 
independent threads in infinite loops. As shown in 
Figure 3, the size of RKF is 5 KB for the 
implementation using the Microsoft Embedded C++.  
 

Size of RKF’s Components (in KB) 
in Casio E-200 PDAs.

2.5

1.5

1

R-GIOP-DOWN

R-GIOP-UP

Context Manager
 

 
Figure 3: RKF’s components. Total size of RKF is 5 KB. 

 
RKF works as an integral part of R-ORB, which is a 
lightweight and context-sensitive object request 
broker for RCSM. RCSM provides an object-based 
middleware framework for context-sensitive 
computing in mobile ad hoc networks. R-ORB 
provides IM_PAIR registration, context data 
acquisition, raw context to structured context 
conversion, context data propagation, IM_PAIR 
method invocation, broadcast and unicast, and client-
server and context-sensitive communication 
management facilities. R-ORB also provides the 
Winsock-based APIs for performing broadcast and 
unicast functionality. RKF uses these APIs to 
perform its broadcast and unicast operations in 
Phases 1 and 3.  
 
We have incorporated the RKF in the R-ORB in our 
RCSM middleware test bed to evaluate RKF. RCSM 
can be configured in several different ways to 
provide a suitable infrastructure for ubiquitous 
computing experiments. At the time of our 
experiments, RCSM provided support for ten 
different contexts, including location, noise level, 
light intensity, and motion. As such, RCSM provided 
us an excellent opportunity to evaluate RKF in a real 
context-sensitive ubiquitous computing setting. The 
computing platform of our choice was several Casio 
E-200 PDAs, because the running versions of RCSM, 
including R-ORBs, were already implemented in 
these PDAs. Each PDA used an Intel Strong Arm 

1110 with 206 MHz clock speed CPU. Each PDA 
was equipped with a D-LINK (Air DCF-660W 
Compact Flash 802.11b) adapter. These adapters 
were configured in mobile ad hoc network mode. As 
such, no infrastructure, such as an access point, was 
necessary to provide the communication support. 
 
5. Experiments 
 
The goal of our experiments is to study the 
performance of RKF for both client-server and 
context-sensitive communications. In each 
experiment, we programmed the threads of RKF to 
perform their operations in 250 MSEC intervals to 
coincide with the remaining R-ORB components. We 
used multiple PDAs equipped with the D-LINK 
adapters to communicate in mobile ad hoc network 
modes. Each PDA was programmed with multiple 
object-based application programs, exchanging data 
with each other using both client-server and context-
sensitive communication channels. 
 
 
Experiment 1: This experiment corresponds to the 
Phase 1 of RKF. Here, we are interested in RKF’s 
performance related to its context-sensitive object 
information broadcast process. This latency may have 
an effect on how fast a DOC middleware can 
discover remote objects in mobile ad hoc networks. 
We performed the experiment by varying the number 
of object interfaces and their methods, and measuring 
the latency in 100th of nanoseconds using the 
GetthreadTimes API available in Windows CE 3.0. 
Figure 4 shows the result of this experiment. It is 
important to note that the end-to-end latency, which 
includes the wireless signal propagation, is beyond 
the control of RKF, and hence it is not shown in the 
results. 
 
Experiment 2: This experiment corresponds to the 
Phase 2 of RKF. Here, we are interested in the 
efficiency of RKF during peer matching process. As 
we discussed in the last section, the efficiency may 
depend on several factors, such as the number of 
currently context-matched IM_PAIRs (in the CMO 
POOL), the number of compatible objects per 
interface, and the number of remote object beacons 
received. We performed several versions of this 
experiment by both varying the number of local 
interfaces and their methods and changing the ratio of 
compatible IM_PAIRs per local IM_PAIR. Figure 5 
shows the result with a ratio of 16. 
 
Experiment 3: This experiment corresponds to RKF’s 
Phase 3. We performed two different versions of this 
experiment. In the first version, we were interested in 
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Figure 4: Context-match event processing latency in RKF during 

context-sensitive object information broadcast. 

 
Figure 5: Peer matching latency in RKF for  

FRIEND_LIST/IM_PAIR = 16. 
 

 

RKF’s performance in processing outgoing data for 
context-sensitive communications. In the second 
version, we measured RKF’s performance for 
processing outgoing client-server method data. 
Figure 6 shows these results for these two cases. Both 
cases show that there is no noticeable performance 
penalty for supporting both client-server and context-
sensitive communications. 
 
Experiment 4: This experiment corresponds to RKF’s 
Phase 3. Unlike Experiment 3, here we are interested 
in measuring RKF’s incoming object-data processing 
latency. The first version of this experiment 
measured the latency when the data were received 
using context-sensitive communication channels. 
Figure 7(a) shows the results of this version. In the 
second version, we measured the latency during the 
processing of incoming client-server messages. The 
results are shown in Figure 7(b).  
 
Based on these experimental results, we have found 
that RKF performs slightly more efficiently for 
client-server communications than for context- 

 
(a) 

 
(b) 

 
Figure 6: Outgoing IM_PAIR data processing latency during (a) 

context-sensitive and (b) client-server communications. 
 
 

sensitive communications. The additional complexity 
of context-sensitive communications increases the 
latency. However, this increase in latency is 
negligible since even in the worst case the latency is 
in milliseconds. However, it is noted that since RKF 
operates in ubiquitous computing environments, the 
higher probability of packet collisions and loss in 
wireless environments may reduce the end-to-end 
performance of RKF significantly. 

 

6. Discussions 
 
We have presented RKF, which is a lightweight 
middleware protocol for ad hoc distributed 
computing in ubiquitous computing environments. 
RKF can be used as a building block to develop 
higher-level communication subsystem of a DOC 
middleware. RKF’s support for both client-server and 
context-sensitive communications makes it suitable 
to be used in heterogeneous networking 
environments. Our experimental results, based on the 
implementation of RKF in RCSM test bed, indicate 
that it can be easily used in PDA-like devices. Future 
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Figure 7: Incoming IM_PAIR data processing latency during (a) 

context-sensitive and (b) client-server communications. 
 

research along this line includes enhancing RKF to 
improve its energy-efficiency so that it can be even 
more attractive for energy-constrained devices.  
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