
Situation-Aware Contract Specification Language for
Middleware for Ubiquitous Computing

Stephen S. Yau, Yu Wang, and Dazhi Huang
Department of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287-5406, USA

{yau, wangyu, dazhi.huang}@asu.edu

Hoh P. In
Department of Computer Science

Texas A&M University
College Station, TX 77843-3112, USA

hohin@cs.tamu.edu

Abstract
Ubicomp applications are characterized as situation-
aware, frequently-and-ephemerally-communicated and
QoS-properties-associated. Using middleware to provide
multiple QoS support for these ubicomp applications
will enhance the development of the ubicomp
applications. To satisfy the different QoS requirements
of various applications in ubicomp environments, which
are heterogeneous and resource-variant, it is important
for the underlining middleware to adapt to different QoS
requirements and environments. Situation-Aware
Contract Specification Language (SA-CSL) specifies the
QoS requirements of the applications. The specification
includes requirements in situation-awareness, real-time
constraints and security properties. This specification is
used to customize the middleware architecture to better
satisfy these requirements. SA-CSL is based on the
Separation of Concern (SoC) discipline used in the
Aspect-Oriented Software Development (AOSD). It
specifies the crosscutting aspects of situation-awareness,
real-time constraints and security property separately.
Because of the object-oriented design, SA-CSL is open
for incorporating new QoS properties specification.

Keywords: Ubiquitous computing, middleware,
situation-awareness, Situation-Aware Contract
Specification Language (SA-CSL), Reconfigurable
Context-Sensitive Middleware (RCSM), Aspect-
Oriented Software Development (AOSD), Quality of
Service (QoS), security, real time.

1. Introduction
In ubiquitous computing (ubicomp) environments [1],
where computing resources are available everywhere
and a great amount of mobile devices play important
roles, middleware serves as an essential infrastructure

between networks and ubicomp applications. It hides the
heterogeneity of the network environments and provides
necessary services to ubicomp applications, such as
communication, data access, resource control, and
service discovery. Some ubicomp applications are
situation-aware, which means that different applications
use different situation changes to trigger different
application actions. Situation is a set of past context
attributes and/or actions of individual devices which is
relevant to determine future device actions. Context is
any instantaneous, detectable, and relevant condition of
the environment or the device.

Since ubicomp environments are open and situation
changes randomly, the available resources are variant
and unexpected. Therefore, it is impractical to satisfy the
applications’ different QoS requirements (such as real-
time and security) using an unchanged middleware. It is
obvious that the adaptable middleware will satisfy the
applications’ various QoS requirements.

To facilitate the development of situation-aware
ubicomp application software, we have developed the
Reconfigurable Context-Sensitive Middleware (RCSM)
that provides situation-analysis and response activation
services [2-5]. The RCSM provides core middleware
services in an Object Request Broker, and uses situation
change events as triggers of inter-device
communication. The situation-analyzing module of
RCSM is adaptable, i.e. different application software
have different situation analyzing modules generated
from different situation-awareness requirements. A
Situation-Aware Interface Definition Language (SA-
IDL) has been developed for specifying such situation-
awareness requirements [2].

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEE

To expand RCSM by incorporating the QoS support for
real-time and security service, we must extend SA-IDL
to incorporate the specification of real-time constraints
and security mechanism. This expanded language is
called Situation-Aware Contract Specification Language
(SA-CSL). The functionality of the SA-CSL is to
formally specify the requirements of various
applications residing on RCSM in the aspects of
situation-awareness, real time and security. Then the
SA-CSL specification is used in the adaptation of
RCSM so that RCSM will have a better architecture to
efficiently satisfy the applications’ requirements.

2. Elements of SA-CSL
SA-CSL uses the presentation of situation awareness in
our SA-IDL [2]. In SA-IDL, we addressed the situation-

awareness by associating the situations that affect the
applications and the actions the applications may take to
respond to the situation. Besides specifying situation-
awareness, SA-CSL is capable of specifying real-time
and security requirements. For security aspect, the
adoption of different security mechanisms, algorithms,
techniques and policies, are associated to the device
actions or application methods. For real-time aspect, all
the adaptation, including the security adoption,
architecture reconfiguration, and application actions, is
specified with real-time requirements considering the
situation-match as a situation event. Figure 1 depicts the
relationship among situation awareness, real-time and
security requirements.

Object

Situation
Aspect

Resource
Object

Situation-
Aware Object

Context
Object

Security Aspect

Developer-
defined
protocol
templates

Security
Entities

Base
Classes

Security
Component
Base Class

Real-time
Aspect

Real-time
Base Class

Figure 2: The object hierarchy in our SA-CSL.

Real-time
Constraints Subject Entity Object

Policy templates

Resource
Entity Object

(Fault
Tolerance
Aspect,

Reliability
Aspect, etc.)

Other
Potential
Aspects

Situation
Event

Examples of situation:
different configuration, computing resource
availability, dynamic task requirements,
environmental conditions, and application
conditions.

Triggers responding
action in real-time
(specified in real-time
requirement)

Device action/application method
invocation

Security specifications selection

 Figure 1. The internal structure of SA-CSL

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEE

SA-CSL is based on the Separation of Concerns (SoC)
used in Aspect-Oriented Software Development
(AOSD). While the application software increases the
complexity, the SoC principle is very beneficial by
enabling developers to focus on one aspect at a time.
Although SA-CSL includes only situation-awareness,
real-time and security, it should not require much effort
to expand SA-CSL to include new QoS properties, such
as fault tolerance, scalability, etc. To address this, an
important consideration is to support SA-CSL in an
object-oriented style. As depicted in Figure 2, all the
aspect specifications are presented as objects. As such,
various aspects are defined independently as individual
objects and new aspects can be easily added by defining
new aspect object types. On the other hand, different
aspects can be integrated seamlessly by defining
association between aspects and application objects.
Furthermore, aspect objects can be used in different
applications.

3. Incorporating situation-awareness in SA-
CSL
The conceptual model of situation awareness is depicted
in Figure 3. The changes of situation create a set of
“situation change” events. The events are captured by an
event handler, which makes decision on how to react to
these events. The event handler makes decisions based
on an event handling plan that prepared beforehand, i.e.,
the specification of a set of “situation-action” pairs.
Since each action requires certain resources, the event
handler also checks the available resources to ensure
that required resources are available before taking any
action. Furthermore, the actions eventually taken are
also regarded as elements that compromise new
situations, and form new events. By using SA-IDL, SA-
CSL defines the context attributes (and their value

range), derivative, device actions, and situations. In SA-
CSL, situations are used widely in describing different
configurations, computing resource availability,
dynamic task requirements, environmental conditions,
and application conditions.

We represent situation as an expression on previous
device-action record over a period of time and/or the
variation of a set of contexts of the device over a period
of time with respect to the application [2]. Situation is
used to trigger further actions. This is depicted in Figure
4. To express the situations, we define the following
components:
• Context Tuple: <t, c1,c2,…,cn>. t is the time stamp

and c1,c2, …, cn are a set of context attributes.
Context tuple values are sampled periodically.
These tuple values are the raw materials based on
which we analyze situations

• Action Tuple: <t, a1, a2, …, an>, where t is the time
when the action is performed and a1, a2, …, an are a
set of attributes about the action. They could be
name, parameter types, parameter values, etc. When

Context
Tuple

Action Tuple
(action taken)

Derivative

Situation

Figure 4. A situation expression system

Action
to take

triggers

S
I
T
U
A
T
I
O
N

event

Plan : situation-awareness
requirement
(Situation-action pairs)

Event
handler

event

event

Object i. action 1i1

Figure 3. The conceptual model of situation-aware computing.

Object j. action 1i1

Object k. action 1i1

Resource
Resource

Resources

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEE

an action is taken, the information about this action
is recorded using an action tuple value.

• Derivative: It is the result of the analysis of
contexts, such as the value of a function of several
context values, whether a context value has
changed, how much it has changed, etc.

• Situation Expression: It has the following format:
[∀,∃] t in <time range> [context, derivative, action,

situation] <compare><value> (1)

We can form new situations by performing “not”, “and”
or “or” operations on defined situations.

To specify event-handling plan, i.e., what actions should
be taken to respond to different situations, we define
related rules to associate actions to situations as follows:

[activate at situation_x] action_y…. (2)

A list of such “situation_x” and “action_y” forms a plan.
The event-handler monitors the situation-match events
and activates the actions associated to them according to
the plan.

4. Incorporating Real-Time Specification in
SA-CSL
Real-time specification includes specification on events
and responses. The events can be stimuli. These stimuli
can occur repeatedly, which are normally called event
sequence. Once an event occurs, the computation that is
performed as a consequence of an event is referred as a
response. Events can have the properties of internal,
external, as well as arrival patterns, such as period.
Response has properties of resources requirements,
dependencies, and timing requirements, such as
deadline.

The SA-CSL should be able to define the following
parameters:

For event:
*event types: external (environmental) or internal or
timed.
*event arrival pattern: periodic, irregular, bounded,
busty arrivals, unbounded.
*mode: can be defined as a set of events.

For response:
*response: computational work that must be performed
as a consequence of an event, can
consist of actions.
*actions: no resources allocation change during actions.
*ordering: order of actions that form a response.
*action attributes:
 -priority/importance
 -duration/deadline

-resource requirements: we defined a resource
object for this parameter
-dependencies
-allocation policy: policy used to allocate resource,
such as round robin...
-atomic action or not
-jitter

For Resource: To allocate resources to satisfy the real-
time requirements, we need to specify the required
resources of response actions. We define an object
“Resource” as the base object of all specific resources
objects (such as power, CPU time, and bandwidth.).

Resource{
 Type;
 ID;

location;
 Required;

Available;
 Scheduling-policy;
 }

Figure 5 depicts the object hierarchy of the resources.

Memory CPU Disk I/O ……

Resource

 Computer-Oriented Non-computer-oriented

H/W S/W Network

……

 Weapon Human Data

…… …… …… ……

……
……

Figure 5. The resource objects hierarchy

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEE

5. Incorporating Security Specification in
SA-CSL
To incorporate security requirements, the SA-CSL must
be capable of defining the following elements [6,7,8]:

• Entity: Subjects and objects that are involved in the
security management. There are several types of
entities –
o Subject entities: Component, application, user,

device, host, group, network domain, etc. In
SA-CSL, we define these entities as subject
entity objects.

o Resource entities: File, data, message, CPU,
memory, etc. In SA-CSL, we define these
entities as resource entity objects.

o Security entities: We define several base
classes for general security entities, such as
key, certificate and role. Then, all specific
security entities (e.g., X.509 certificates) extend
the certificate class.

• Action: actions taken by entities to interact with
other entities, such as sending/receiving messages,
uploading/downloading files, read/write/execute
files, etc. The definition of actions is incorporated
in the definition of entities.

• Mechanism: the basic security operation that
constitutes a specific security solution, e.g.,
encryption, decryption, re-keying method (for
secure group communication), digest method, etc.
All the security mechanisms are either provided
through system library using some third party
components or defined by developers. In SA-CSL,
we define a SecComp base class to specify the
common properties (e.g., type, location, vendor,
size, etc.) of security components and the specific
mechanism objects extend this base class to specify
the interface of different security components.

• Policy: a high-level description of the behavior of
entities. For example, a user (which is an entity) can
only access a particular classified file (which is an
action involving another entity) when the user is in
a certain office. Policies are defined as a set of
constraints, which include internal variables, the
condition formed by internal variables and handlers
that enforce the security requirements based on the
condition.

6. An Example
In this section we will use the Smart Classroom as an
example to illustrate the SA-CSL. The Smart Classroom
will facilitate collaborative learning among college
students in a ubicomp environment.

In a Smart Classroom, the instructor and students use
their own situation-aware PDA for various learning
activities, such as lecture and student presentations,
discussions, and group collaborations. Students form
small groups to solve a specific problem or develop a
group project. During group discussions, the instructor
moves from group to group to check the progress of
each group or respond students' questions in their group
discussions. When the instructor walks towards a group,
he receives the discussion material of the group through
his PDA and can be actively involved in the group's
meeting immediately. When the instructor or a student is
near the projector screen to show slides, the light in the
classroom is automatically dimmed and the presentation
material automatically distributed to the students.
Students' PDAs will dynamically form mobile ad hoc
networks for group meetings. Each PDA monitors its
situation (locations of PDAs, noise, light, and mobility)
and uses situation change event to trigger
communications among the students and the instructor

SecurityConstraint { //a security requirement object
 Action in;
 Action out;
 Mechanism m;
 assert in.result == out.input;
 [on satisfying] out.input=m(in.result);
} Sec1;

QoS-RealTime { // a real-time constraint object
 Int duration;
 Int importance;
}RTC1;

Resources{ // a resource object
 Component (bandwidth, memory, CPU);
}resource1;

//instantiate the real-time, security requirement, and
//resource objects needed by download action
rtDownload = new RTC1 (n, 1}
secureDownload = new Sec1 (download,
student.sendDiscussion, PublicEncryption);
resourceDownload = new Resources(new
bandwidth(24), new memory(300), new CPU(64));

Situation-aware-object {
Situation situ1;
//situ1 represents that the instructor is moving to
//group k. Refer to [2] for detailed specification;
[incoming] [activate at situ1] download ()
RequiredResources resourceDownload;
WithSecurityConstraint secureDownload;
WithRealtimeConstraint resourceDownload;

}instructor;

Figure 6. SA-CSL sample code

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEE

for group discussion, and automatic distribution of
presentation materials, if any.

Let us consider the following scenario: During group
discussion, when the instructor is moving to a specific
group, his PDA will automatically download this
group’s discussion material. The download should be
started within n seconds after the situation is true, and
the discussion material must be secured using secure
mechanism m. Figure 6 shows the sample code of SA-
CSL for this scenario.

7. Comparison with Current Technology
Our SA-CSL is to specify the QoS requirements of the
ubicomp applications. The requirements include aspects
of situation-awareness, real time and security. The
middleware for ubicomp applications uses the SA-CSL
specification in adaptation of the architecture to satisfy
the applications requirements. To compare SA-CSL
with existing techniques, we observe the following:

• On situation-awareness: In situation-aware
computing, SA-CSL is the only language that enables
developers to specify the situations in interface level and
then automatically generate the situation analysis
module [2]. Currently, other methods dealing with
situation-awareness either directly develop the situation
analyze module manually [9,10] or manually build a set
of context processing component for later integration of
synthesis [11].

• On general QoS specification: QoS Description
Languages (QDL) [12] also addresses the middleware
QoS: dependability, real-time and security, but requires
the use of a separate language for each aspect. QoS
Modeling Language (QML) [13] is a general
specification language that is not limited to a specific
QoS aspect or application domain. Neither QDL nor
QML support situation-awareness. Our SA-CSL can be
used to specify real-time and security aspects integrated
with the desired situation-awareness.

• On security specification: Although WS-Security
[14], Ponder Policy Specification language [6] and
Secure Operations Language (SOL) [15] have good
security specification, they do not address the relation of
situation-awareness and security. Gaia [16] provides
situation-awareness access control by defining a space
role for an active space and associating an access list
with each service in the space. Since our specification
language associates security specification with situations
and actions, it is more powerful to express situation-
aware security. Furthermore, since our specification
language specifies the security mechanisms that are
going to be used, it is possible to integrate third-party

security components in RCSM. Moreover, it facilitates
the trade-off analysis for different QoS aspects (such as
real-time and security) because what security
mechanisms are used is clearly defined.

8. Conclusion
The SA-CSL is used to facilitate the middleware
adaptation by specifying various aspects of requirements
of the applications software that resides on the
middleware. SA-CSL separates the specification of
various crosscutting aspects: situation awareness, real-
time constraints, and security requirements. Each aspect
is represented as a multiple-attribute type. SA-CSL
enables the application developers to specify the QoS
requirements at design phase and deliver the QoS-
related service to the middleware. We have discussed
the design consideration of the SA-CSL and we are in
process of constructing production rules and compiler of
the SA-CSL, and developing the approach to adapting
middleware architecture according to SA-CSL
specification.

A potential drawback of our approach is that the SA-
CSL defines the QoS constraints in a single level –
operation level, that is all the QoS constraints are
associated with operations of an application objects.
This may not cover all the QoS specifications, such as
the QoS constraint for a whole interface or for a stream.
Second, the QoS property is defined as a multi-attribute
type. The issue on whether this form of QoS definition
is sufficient for all the QoS properties should be further
explored.

Acknowledgment
This research was supported in part by the National
Science Foundation under grant number ANI-0123980.

References:

[1] M. Weiser, “Some Computer Science Issues in
Ubiquitous Computing”, Comm. ACM, Vol. 36, No. 7,
July 1993, pp. 75-84.

[2] S. Yau, Y. Wang, and F. Karim, “Developing
Situation-Awareness in Middleware for Ubicomp
Environments,” Proc. 26th Int'l Computer Software and
Applications Conf. (COMPSAC 2002), pp. 233-238.

[3] S. Yau, F. Karim, Y. Wang, B. Wang, and S. Gupta,
“Reconfigurable Context-Sensitive Middleware for
Pervasive Computing,” IEEE Pervasive Computing,
1(3), July-September 2002, pp. 33-40.

[4] S. S. Yau and F. Karim, "Adaptive Middleware for
Ubiquitous Computing Environments", Design and
Analysis of Distributed Embedded Systems, Proc. IFIP

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEE

17th World Computer Congress, August 2002, Vol. 219,
pp. 131-140.

[5] S. S. Yau and F. Karim, "Context-Sensitive
Middleware for Real-time Software in Ubiquitous
Computing Environments", Proc. 4th IEEE Int’l Symp.
on Object-Oriented Real-time Distributed Computing
(ISORC 2001), May 2001, pp. 163-170.

[6] N. Damianou, N. Dulay, E. Lupu, and M. Sloman,
“The Ponder Policy Specification Language”, Proc. Int’l
Workshop on Policies for Distributed Syst. and
Networks (POLICY), Springer-Verlag LNCS 1995,
Bristol, UK, Jan. 2001, pp. 18-39.

[7] A. Heydon, M. W. Maimone, J. D. Tygar, J. M.
Wing, and A. M. Zaremski, “Miro: Visual Specification
of Security”, IEEE Trans. on Software Engineering,
Vol. 16. No. 10. October 1990, pp. 1185-1197

[8] L. C. Aiello, and F. Massacci; “An executable
specification language for planning attacks to security
protocols”, IEEE Computer Security Foundation
Workshop, P. Syverson, (ed.) IEEE Computer Society
Press, 2000, pp. 88-103.

[9] A. Chen et al, “A Support Infrastructure for Smart
Kindergarten”, IEEE Pervasive Computing, 1(2), June
2002, pp. 49–57.

[10] G.D. Abowd, “Classroom 2000: An Experiment
with the Instrumentation of a Living Educational
Environment,” IBM Systems. J., vol. 38, no. 4, Oct.
1999, pp. 508–530.

[11] A.K. Dey and G. Abowd, “The Context-Toolkit:
Aiding the Development of Context-Aware

Applications,” Proc. Conf. on Human Factors in
Computing Systems (CHI), USA, 1999, pp 434–441.

[12] P. Pal, et al., “Using QDL to Specify QoS Aware
Distributed (QuO) Application Configuration,” Proc.
3nd IEEE Int’l Symp. on Object-Oriented Real-time
Distributed Computing (ISORC 2000), March 15-17,
2000, Newport Beach, CA. pp. 310-319.

[13] S. Frolund and J. Koistinen, “Quality of Service
Specification in Distributed Object Systems Design,”
Proc. 4th USENIX Conf. on Object-Oriented
Technologies and Systems (COOTS) Santa Fe, New
Mexico, April 27-30, 1998.
http://www.usenix.org/publications/library/proceedings/
coots98/full_papers/frolund/frolund.pdf

[14] Web Service Security (WS-Security) version 1.0,
April 5, 2002 http://www.verisign.com/wss/wss.pdf

[15] R. Bharadwaj, “SOL: A Verifiable Synchronous
Language for Reactive Systems”, Proc. Synchronous
Languages, Applications, and Programming (SLAP'02),
ETAPS'2002, April 13, 2002, Grenoble, France.
http://www.inrialpes.fr/bip/people/girault/
Slap02/programme.html

[16] G. Sampemane, P. Naldurg, and R. H. Campbell,
“Access control for Active Spaces”, Proc. Annual
Computer Security Applications Conf. (ACSAC2002),
Las Vegas, Nevada, Dec 9-13 2002.
http://choices.cs.uiuc.edu/gaia/papers/acsac02-space-
sec.pdf

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

