
 1

Specification, Decomposition and Agent Synthesis for
Situation-Aware Service-based Systems

S. S. Yau, H. Gong, D. Huang, W. Gao, and L. Zhu

Arizona State University, Tempe, AZ 85287-8809, USA
{yau, haishan.gong, dazhi.huang, w.gao, luping.zhu}@asu.edu

ABSTRACT

Service-based systems are distributed computing systems with the major advantage of enabling rapid
composition of distributed applications, such as collaborative research and development, scientific
computing, e-business, health care and homeland security, regardless of the programming languages and
platforms used in developing and running various components of the applications. In dynamic service-
oriented computing environment, situation awareness (SAW) is needed for system monitoring, adaptive
service coordination and flexible security policy enforcement. To greatly reduce the development effort of
SAW capability in service-based systems and effectively support runtime system adaptation, it is necessary
to automate the development of reusable and autonomous software components, called SAW agents, for
situation-aware service-based systems. In this paper, a logic-based approach to declaratively specifying
SAW requirements, decomposing SAW specifications for efficient distributed situation analysis, and
automated synthesis of SAW agents from decomposed specifications is presented. This approach is based
on AS3 calculus and logic, and our declarative model for SAW. Evaluation results of our approach are also
presented.

Keywords: Service-based systems, situation awareness, decomposition, agent synthesis, AS3 calculus and
logic.

1. INTRODUCTION

Service-Based Systems (SBS) are distributed computing systems with the major advantage of enabling
rapid composition of distributed applications, regardless of the programming languages and platforms used
in developing and running different components of the applications. SBS have been applied in many areas,
such as collaborative research and development, e-business, health care, environmental control, military
applications and homeland security (Booth, et al., 2004). In these systems, situation awareness (SAW),
which is the capability of being aware of situations and adapting the system’s behavior based on situation
changes (Yau, et al., 2004; Yau, et al., 2006b), is often needed for system monitoring, adaptive service
coordination and flexible security policy enforcement (Yau, et al., 2007). A situation is a set of contexts in
a system over a period of time that affects future system behavior for specific applications, and a context is
any instantaneous, detectable, and relevant property of the environment, the system, or the users (Yau, et al.,
2002ab).

A large-scale SBS often needs to support various applications simultaneously. These applications often
need to share and reuse situation information in the system for providing better QoS. Hence, it is necessary
to provide reusable SAW capability in SBS. To greatly reduce the development effort of situation-aware
application software in SBS as well as supporting runtime system adaptation, it is necessary to automate the
development of reusable and autonomous software components, called SAW agents, for performing various
tasks in runtime to achieve SAW capability. These tasks include the acquisition of relevant contexts, the
analysis of situation changes, and the decision making on triggering proper actions in response to situation
changes.

Due to efficiency and dependability considerations, such tasks should not be performed by a centralized
SAW agent in a large-scale SBS since SBS often involves a large number of contexts, situations, and
services distributed over networks. On the other hand, performing these tasks on distributed SAW agents in
a large-scale SBS requires proper coordination of the SAW agents so that the entire system can have a

 2

consistent and complete view of situation changes in the system. Communication overhead incurred from
such coordination may have significant impact on system performance. Hence, it is necessary to properly
distribute the tasks for achieving SAW to distributed SAW agents in SBS. Manually decomposing the
situations into subsets and specifying which SAW agent should analyze which subset of situations is time-
consuming and error-prone. Furthermore, such a manual process is tedious and very difficult for developers
to produce SAW agents with good performance of distributed situation analysis. Hence, it is desirable that
the decomposition can be automatically done in such a way that the SAW agents can perform distributed
situation analysis efficiently.

In this paper, we will present an approach to logic-based specification, automated decomposition and
agent synthesis for situation-aware SBS. Our approach is based on our declarative SAW model (Yau, et al.,
2005a), and AS3 calculus and logic for rapid development of Adaptable Situation-Aware Secure Service-
Based (AS3) systems (Yau, et al., 2007). SAW requirements are analyzed and graphically specified using
our SAW model and a Graphic User Interface (GUI) tool, and automatically translated to declarative AS3
logic specifications. We have developed an algorithm to decompose the generated AS3 logic specifications
to appropriate subsets based on the distribution of context sources, system and network status, as well as
the composition relations among situations. For each subset of AS3 logic specifications, an SAW agent
described in AS3 calculus terms will be automatically synthesized to perform the necessary tasks to meet
the corresponding subset of SAW requirements.

2. CURRENT STATE OF THE ART

Substantial research has been done on SAW in artificial intelligence, human-computer interactions and
data fusion community. Existing approaches may be divided in two categories: One focuses on modeling
and reasoning SAW (McCarthy, et al., 1969; Pinto, 1994; Reiter, 2001; Lausen, et al., 1995; Matheus, et al.,
2003; Chen, et al. 2003), and the other on providing toolkit, framework or middleware for development and
runtime support for SAW (Yau, et al., 2004; Yau, et al., 2006b; Dey and Abowd, 2001; Roman, et al.,
2002; Ranganathan and Campbell, 2003; Chan and Chuang, 2003).

In the first category, Situation Calculus (McCarthy, et al., 1969) and its variants (Pinto, 1994; Reiter,
2001) are used to represent dynamic domains, but the definitions of “situation” used in Situation Calculus
and its variants are quite different. McCarthy (McCarthy, et al., 1969) considers a situation as a complete
state of the world, while Reiter et al. (Reiter, 2001) considers a situation as a state of the world resulting
from a finite sequence of actions. McCarthy’s definition leads to the Frame problem because a situation
cannot be fully described. Reiter’s definition makes a situation totally determined by executed actions.
GOLOG (Levesque 1997) is a logic programming language, and allows programs to reason about the state
of the world and to consider the effects of various possible courses of action before committing to a
particular behavior. However, it only works with completely known initial situations. Frame Logic (abbr.,
F-Logic) (Lausen, et al., 1995) was developed by Kifer et al., and has the modeling capabilities of object-
oriented concepts. It can be used for specifying and reasoning SAW requirements. Matheus et al. presented
a core ontology for SAW (Matheus, et al., 2003) to provide a basis for building situations. A situation here
is considered as a collection of situation objects, including objects, relations and other situations. Temporal
and spatial relationships of situations can be specified using it. CoBrA Ontology (Chen, et al. 2003) is
intended for modeling context knowledge and enabling knowledge sharing in intelligent spaces. It defines a
set of vocabularies for describing people, agents, places, etc. in an intelligent meeting room system.
However, these ontologies are limited to representing and reasoning SAW requirements.

In the second category, Context Toolkit (Dey and Abowd, 2001) provides a set of ready-to-use context
processing components (called widgets) and a distributed infrastructure that hosts the widgets for
developing context-aware applications. GAIA (Roman, et al., 2002; Ranganathan and Campbell, 2003),
which is a distributed middleware infrastructure provides development and runtime support for context-
aware applications in ubiquitous computing environment. It manages the resources and services that are
used by applications, provides a component-based application framework for constructing, running or
adapting applications. MobiPADS (Chan and Chuang, 2003) is a reflective middleware designed to support
dynamic adaptation of context-aware services based on application’s runtime reconfiguration. Services are
configured and chained together to provide augmented services to mobile applications. RCSM (Yau, et al.,
2004, 2006b) provides the capabilities of context acquisition, situation analysis and situation-aware
communication management, and a middleware-based situation-aware application software development

 3

framework. However, no existing approaches can have automated synthesis of software components for
runtime support for SAW in service-oriented computing environment.

3. BACKGROUND

 In this section, we will highlight the architecture of our AS3 systems (Yau, et al., 2007), where SAW
agents are used to provide runtime support for context acquisition and situation analysis (Yau, et al., 2005a).

We will also summarize the key concepts of
our declarative SAW model (Yau, et al.,
2005a), and AS3 calculus and logic (Milner,
1999), which are used in the development of
our agent synthesis approach.

AS3 systems are collections of services,
users, processes and resources, which act to
achieve users’ goals under dynamic
situations without violating their security
policies. Fig. 1 shows the architecture of an
AS3 system, in which organizations publish
their capabilities as services. Each service
provides a set of methods as “actions” in the
AS3 system. SAW Agents collect context
data periodically, analyze situations based
on context data and executed action results,

trigger appropriate actions based on situations to provide reactive behavior of the system, and provide
situational information to other agents for situation analysis, service coordination, and security policy
enforcement. Security Agents enforce relevant security policies in a distributed manner based on the current
situation. Mission Planning Service and Workflow Scheduling Service generate and schedule workflows to
achieve users’ goals based on security policies, situations and available resources. Workflow Agents
coordinate the execution of workflows based on situational information.

3.1 A Declarative Situation Awareness (SAW) Model

In our declarative SAW model, an ontology is defined for the essential entities for representing SAW
and the relations among these entities (Yau, et al., 2005a, 2006b). The advantages of the ontology are that it
describes an abstract and application-independent view of SAW, and can be easily shared or extended to
model SAW requirements in different application domains. The ontology contains the following entities:

 A context has a unique context name, a context type and a context value at a time.
 A context comparator is a binary operator returning a Boolean value.
 A service has a unique service name, and is on a host.
 A service invocation is provided by a service, and has a unique method name, accepts inputs as

arguments and returns outputs as context values.
 An argument can be a constant in the context value domain, or a context variable whose value is

obtained through service invocations at runtime.
 An atomic constraint is used for comparing two arguments using a context comparator.
 A situation can be an atomic situation, a logical composite situation or a temporal situation. The

value of a situation is a Boolean value.
 An atomic situation is a situation defined using a set of service invocations and an atomic constraint,

and cannot be decomposed into any other atomic situations.
 A situation operator is a logical operator or a temporal operator.
 A temporal operator is either P (had been true over a period time in the past), or H (was true

sometime in the past) defined over a period of time in the past.
 A logical composite situation is a situation recursively composed of atomic situations or other

logical composite situations or temporal situations using logical operators, such as ∧ (conjunction),
∨ (disjunction), ¬ (negation).

Security
Agents

Mission Planning
Services

Mission
Goal

Workflow
Scheduling
Services

Directories

Situation-
Awareness

Agents

Services

Various
Capabilities

Discovery
Services

Workflow

Workflow
Agents

Fig. 1. The architecture of an AS3 System.

 4

 A temporal situation is a situation defined
by applying a temporal operator on a
situation over a period of time. The
situation used to define a temporal
situation can be either an atomic situation
or a logical composite situation, which is
not composed by any temporal situations.

Three basic relations, precondition, do, and
trigger, are defined among situations and
service invocations. Relation precondition
describes a situation is a precondition of a
service invocation. Relation do describes the
effect of a service invocation. Relation trigger
represents a reactive behavior of the system. In
SBS, we assume that there are services available
for monitoring and providing context values.
Hence, contexts can be done through service
invocations.

Based on our SAW model, developers can
analyze the SAW requirements of an application

as follows:
i) Based on the functionality of the application required by users and the specifications of the

services available in SBS, developers identify the services to be used in the application.
ii) Developers identify the contexts and all the methods (service invocations) provided by the

services found in (i), as well as constants and context comparators used in the application.
iii) Following the basic relations in our SAW model, developers identify the situations relevant to the

service invocations identified in (ii), and identify the relations among these situations and the
service invocations.

iv) Developers extract atomic situations from the situations identified in (iii) if the identified
situations contain any situation operators.

v) Developers construct atomic situations using the service invocations, contexts, constants, and
context comparators identified in (ii).

Our SAW model is language-independent and can be translated to specifications of various formal
languages, such as F-Logic and AS3 logic. To facilitate the specification of SAW requirements, we have
developed a graphical representation for the constructs in our SAW model and implemented them in a GUI
tool. Fig. 2 illustrates partial graphical representation of the constructs in our SAW model. Boxes represent
the entities in the model. The type of an entity is quoted by “<<” and “>>”. A solid line with a solid
arrowhead from one entity to another entity represents that the starting entity is used by or composes the
terminating entity. A solid line with a non-solid arrowhead represents that its starting entity is used to
define the terminating entity. A dotted line with a relation encircled by an ellipse is used to connect a
situation and a service invocation with the relation between them. The attributes associated with entities,
such as context types and termination conditions of situation analysis, are, however, not represented in Fig.
2. These attributes are required for synthesizing SAW agents.

3.2 AS3 Calculus and Logic

Process calculi have been used as programming models for concurrent (May and Shepherd, 1984) and
distributed systems (Caromel and Henrio, 2005). AS3 calculus (Yau, et al., 2006a; Yau, et al., 2005b) is
based on classical process calculus (Appel, 1992). It provides a formal programming model for SBS, which
has well-defined operational semantics involving interactions of external actions and internal computations
for assessing the current situation and reacting to it (Milner, 1999). The external actions include
communication among processes, logging in and out of groups/domains. The internal computations involve
invocation of services as well as internal control flow.

For the sake of completeness, we summarize part of the syntax of AS3 calculus in Table 1 which will be
used in this paper. Similar to classical process calculus, a system in AS3 calculus can be the parallel
composition of two other systems, or a recursive or non-recursive process. A recursive or non-recursive

Fig. 2. Partial graphical representation of SAW

requirements

 5

process can be an inactive process, a nominal identifying a process, a process performing external actions, a
process performing internal computations, a service exporting a set of methods, or the parallel composition
of two other processes. The methods are defined by the preconditions describing the constraints on the
inputs accepted by the methods and post-conditions describing the constraints on the outputs provided by
the methods. Continuation passing (Cardelli and Gordon, 2000) is used to provide semantics of
asynchronous service invocations. In Table 1, I:li(y)^cont denotes the invocation of the method li exported
by I with parameter y and continuation cont. External actions involve input and output actions on named
channels with types as in the ambient calculus (Huth and Ryan, 2004). Internal computation involves beta
reduction, conditional evaluation for logic control, and invocation of public methods exported by a named
service or private methods exported by the process itself.

AS3 logic (Yau, et al., 2005b, 2006a) is a hybrid normal modal logic (Blackburn, et al., 2003) for

specifying SBS (Milner, 1999). The logic has both temporal modalities for expressing situation information
as well as modalities for expressing communication, knowledge and service invocation. It provides atomic
formulas for expressing relations among variables and nominals for identifying agents. The AS3 logic
supports developers to declaratively specify situation awareness requirements. Models for the logic are
processes in the AS3 calculus. These processes provide constructive interpretations for the logic. Following
a Curry-Howard style isomorphism (Sorensen and Urzyczyn, 2006), in which proofs are interpreted as
processes, a novel proof system of AS3 logic can support the synthesis of AS3 calculus terms from
declarative AS3 logic specifications.

Here, we will only summarize the parts of syntax of AS3 logic, which will be used in this paper, and
provide some intuitive explanations to the logic. Table 2 shows the part of the syntax of AS3 logic.

In the above table, we assume that every variable x has a type. Intuitively, the nominals act as identifiers
to processes. The knowledge formula intuitively states that after a process receives the item named u from
another process, the process satisfies φ. The modality serv(x;u;σ;φ) indicates that a process invoking
service σ with parameter x receives u as the result, and then satisfies φ. The formula <u>φ describes the
behavior of a process after sending out u. The AS3 logic is a hybrid modal logic in the sense that nominals,
which refer to processes, form primitive formulas (Blackburn, et al., 2003).

The following modalities, which will be used in this paper, can be defined in terms of the primitive
connectives and modalities defined in Table 2:

 Eventually: diam(ϕ) := E(T U φ)
 Universal quantification on time: ∀t ϕ := ¬∃t¬ϕ

Table 1
Part of the syntax of AS3 calculus
P::= //Processes
 zero (inactive process)
 P par P (parallel composition of processes)
 I(x1, …, xn) (process identifier with
parameters)
 E.P (external action)
 C.P (internal computation)
 P1 plus P2 (nondeterministic choice)
 time t.P (timeout)

E::= //External actions
 ch(x) (input from a named channel)

ch<x> (output to a named channel)

C::= //Internal computations
 let x=D instantiate P (beta reduction)

if exp then P else P’ (conditional evaluation)

D::= I:li(y)^cont (method invocation)

Table 2
Part of the syntax of AS3 logic
φ1, φ2 ::= formula
 T true
 U nominal
 pred(x1,…,xn) atomic formula
 x ~ c atomic constraint
 // ~::= > | <| ≤| ≥ | =,
 c is a natural number
 φ1 ∨ φ2 disjunction
 ┐φ negation

E(φ1 U φ2) until
E(φ1 S φ2) since
k(u; φ) knowledge of u
serv(x;u;σ;φ) invocation of service σ using
 input x by φ and returning u
∃t φ existential quantification on time
<u> φ behavior after sending message
φ1 ∧ φ2 conjunction

 6

4. OVERVIEW OF OUR APPROACH

As mentioned before, the tasks for achieving SAW capability in a SBS include relevant context
acquisition, distributed situation analysis and triggering proper actions in response to situation changes at
runtime. To develop SAW capability in SBS, the following major issues need to be addressed:

o Specify SAW requirements. SAW requirements from users are described in natural languages and
cannot be processed algorithmically. Such descriptions are normally ambiguous. Hence,
developers need to have effective tools to support generation of precise specification of the SAW
requirements, which is machine processable.

o Decompose the specifications. Specifications need to be properly decomposed to distribute the
tasks to distributed SAW agents so that they can efficiently achieve SAW capability.

o Synthesize SAW agents. To greatly reduce the development effort and support runtime system
adaptation, SAW agents need to be automatically synthesized.

In this section, we will present an overview of our approach to logic-based specification, automated
decomposition and agent synthesis for situation-aware SBS.

4.1 Architecture of Our Approach

The architecture of our approach is depicted in Fig. 3. The development of SAW capability in SBS
consists of the three steps described in the three boxes in the middle of the figure, each with a set of
techniques identified in the dashed boxes on the left-hand side. The parallelograms and the dotted-line box
on the right-hand side contain the outputs of these steps.

Step 1) Specifying SAW requirements. SAW requirements are first represented graphically using our GUI
tool, then translated to formal specifications in AS3 logic. Using the GUI tool, developers can easily
generate AS3 logic specifications without any knowledge of the AS3 logic. We assume that the consistency
and redundancy of the specifications have been checked by developers or some automated tools.

Step 2) Decomposing SAW specifications. Given consistent and concise SAW specifications, situations
need to be decomposed into multiple subsets, each of which is assigned to an SAW agent for collecting
contexts, analyzing the situations and triggering system's reactive behavior under these situations. In this
step, situations are grouped to subsets by a decomposition algorithm based on a set of inputs and two
decomposition factors. The inputs are SAW requirement specifications and domain knowledge
specifications with network topology and the communication bandwidth between each pair of hosts in the
system (see Sec. 6). The decomposition of situations ensures that the communication cost among the SAW
agents for analyzing these situations can be greatly reduced, and SAW agents can be easily re-synthesized
when SAW requirements are reconfigured at runtime.

Fig. 3. Architecture of our approach

 7

Step 3) Synthesizing SAW agents. From the decomposed situations and related specifications, SAW
agents are automatically synthesized with AS3 calculus terms using our agent synthesis algorithm (see Sec.
7). The synthesized SAW agents will be compiled into executable codes using an existing compiler. The
executable SAW agents will run on a distributed agent execution platform, e.g. the Secure Infrastructure for
Networked Systems (SINS) (Bharadwaj, 2003), to provide SAW capability for SBS. These SAW agents
can also work with other agents, such as security agents for flexible security policy enforcement and
workflow agents for adaptive workflow coordination.

In our approach, a system special service was developed to facilitate the analysis of temporal situations
by SAW agents. The system special service has the following four methods:

 appendHistory(SituName, SituData, Timestamp) stores situational information and removes
outdated data.

 chkSituP(SituName, ω, ε) checks whether the situation was true sometime within [CurrentTime-ω ,
CurrentTime-ω +ε], where CurrentTime is the present time, ω is an offset from CurrentTime, and ε
is the length of the time period to be checked.

 chkSituH(SituName, ω, ε) checks whether the situation was always true within [CurrentTime-ω,
CurrentTime-ω+ε].

 retrieveRelatedData(SituName, ω, ε, Type) retrieves related data of the situation.
At runtime, the contexts and situational information of temporal situations and the situations used to

define temporal situations will be periodically retrieved from and recorded in the system special service by
invoking aforementioned four methods.

4.2 An Illustrative Example

Consider a SBS, which has access to a set of services, including a rescue center, rescue ships,
helicopters and medical ships, for various sea rescue operations. The following “sea rescue” example is
presented to show how situational information is used for coordinating execution of a service-based system,
and to illustrate our approach:

1) The rescue center (rc) receives an SOS message from a ship (bs) indicating that bs has an accident
and some passengers are seriously injured.

2) Upon detecting such a situation, rc is responsible for locating proper services to rescue the injured
passengers.

3) If there are injured passengers in a ‘critial’ status, and the weather is safe for a helicopter to perform
rescue operation, and bs is within a helicopter’s flight range, rc will notify a helicopter heli (by
triggering dispatch_heli method) to pick up the injured passengers and take them to a nearby hospital.

 4) Otherwise, rc will notify a nearby medical ship mShip to go to bs to provide emergency medical
treatment for injured passengers. Also, heli will return to its base if it is on the way to bs.

In this example, a precondition of dispatch_heli action is that wind velocity near bs has been lower than
1000 feet per minute for 15 time units. Developers can analyze the SAW requirements using our SAW
requirement analysis steps identified in Sec. 3.1. Due to limited space, we only illustrate the analysis of
partial SAW requirements in this example as follows:

i) Identify the following services used in the application: rc, bs, heli, and mShip.
ii) In order to invoke dispatch_heli method provided by heli service, the following contexts,

constants and context comparator should be considered:
a. Contexts: location of bs, wind velocity near bs, and passenger injury status (collected by

invoking get_injuryStatus method of rc service).
b. Constants: 15, 1000, and ‘critial’
c. Context comparator: = and <

iii) Method dispatch_heli should be triggered by rc under a situation (called readyToDispatchHeli
situation), which means that there are passengers in critical status (called criticalInjuryFound
situation), and that heli is able to perform the rescue operation on bs (called canUseHeli
situation). Situation canUseHeli is true when bs is within heli’s flight range (called withinRange
situation) and wind velocity near bs has been lower than 1000 feet per minute (called
lowWindVelocity situation) for over 15 time units (called lowWindVelocityForAWhile situation).

iv) Extract atomic situations criticalInjuryFound, withinRange, and lowWindVelocity from the
situations identified in (iii).

 8

v) Construct the atomic situation criticalInjuryFound using get_injuryStatus method of rc service,
context of injury status, constant ‘critical’ and context comparator ‘<’.

5. SPECIFYING SAW REQUIREMENTS

After requirement analysis, developers can construct the graphical representations of these SAW
requirements, and generate AS3 logic specifications from the graphical representations using our GUI tool
without any knowledge of AS3 logic (see Sec. 3.2). The generation of AS3 logic specifications for SAW
requirements can be easily done following a mapping between our model constructs and AS3 logic
formulas shown in Table 3. In the following, we will discuss various specifications of SBS. Fig. 4 shows
partial SAW specifications in the “sea rescue” example.

 Specifying Services
 A method m of service σ with input a and output b is denoted by method signature m(a; b; σ), and the

invocation of service σ with input x returns u as output is denoted by the modality serv(x; u;σ), where a, b,
x and u are typed variables. In particular, a and b are of platform-specific data types, while x and u are of
platform-independent context type. Hence, a service specification provides a mapping between high-level
platform-independent service implementation to low-level platform-specific service implementation. For
example, the following specification describes a method of service rc for collecting a context of “injStat”
type:

get_injuryStatus([int(ALoc)]; [string(IStatus)]; rc)→ serv([loc(ALoc)]; [injuryStatus(IStatus)]; rc)

In the above service specification, the variables ALoc and IStatus used in the modality serv are typed
using context types loc and injuryStatus, whereas the same variables used in the method signature of
get_injuryStatus are typed using the data types int and string. This allows developers to map the context
types, which are platform-independent and only are used for high-level reasoning on SAW, to the actual
data types supported by the low-level execution platform.

 Specifying Atomic Situations
In atomic situation specifications, each atomic situation s consists of a set of service invocations serv(x1;

u1; σ1), …, serv(xn; un; σn) for collecting context values u1, … un and an atomic constraint arg1 opc arg2 for
comparing arguments arg1 and arg2 using context comparator opc. Argument arg1 is always a context
variable, whose value is one of u1, … un. Argument arg2 can either be one of u1, …, un or be a constant in
the context value domain. The atomic constraint determines the value of situation s. Attribute f denotes that
situation s should be analyzed every f time units. Attribute cond is the termination condition of s. It means
that whenever cond becomes true, stop analyzing s. For example, an atomic situation criticalInjuryFound
with the meaning of “an injured passenger is in critical status” should be analyzed every 10 time units until
the situation rescueSuccess becomes true. AS3 logic specification for this atomic situation is below:

Table 3
Specifying SAW requirements in AS3 logic
Specification Syntax

Service invocation m(a; b; σ)→ serv(x; u; σ)

Atomic situation serv(x1; u1; σ1), … ,serv(xn; un; σn), arg1 opc arg2
→diam(k([u1, …, un,], s, monitor_until(f, cond)))

Logical composite
situation

k([u1, …, uk,], s1) ∧ k([uk+1, …, un], s2) | k([u1, …, uk], s1) ∨ k([uk+1, …, un], s2) |
¬k([u1, …, uk], s1)
→diam(k([u1, …, un], s, monitor_until(f, cond)))

Temporal situation ∀ Time currentTime-ω≤Time≤currentTime-ω+ε, s’ |
∃ Time currentTime-ω≤Time≤currentTime-ω+ε, s’
→diam(k([x1, …, xn], s, monitor_until(f, cond)))

Relation among
situations and
service invocations

trigger(m, s)
precondition(m, s)
do(m, s1, s2)

 9

 serv([loc(ALoc)];[injuryStatus(IStatus)]; rc), IStatus = ‘critical’
→ diam(k([loc(ALoc), injuryStatus(IStatus)], criticalInjuryFound, monitor_until(10,rescueSuccess)))

 In the above specification, the modality serv(loc(ALoc);injuryStatus(IStatus);rc) corresponds to a
service invocation get_injuryStatus, which returns the injury status of a passenger in the accident, given the
accident location ALoc. Atomic constraint IStatus = ‘critical’ is used for comparing a context variable
IStatus with a constant ‘critical’ using context comparator ‘=’.

 Specifying Temporal Situations
In AS3 logic, temporal operators P (sometimes in the past) and H (had been true over a period of time in

the past) are defined using ∃ (existential) and ∀ (universal) quantifications over a time range. The time
range is defined as [CurrentTime-ω , CurrentTime-ω+ε], where ω is an offset from the present time
CurrentTime, and ε is the length of the time period to be checked. For example, a temporal situation
lowWindForAWhile with the meaning of “wind velocity in the accident location has always been low in the
past 15 time units” is specified as follows:

∀Time CurrentTime-15 ≤ Time ≤ CurrentTime, k([int(Time), windVel(Vel)], lowWindVelocity)
→ diam(k([windVel(Vel)], lowWindForAWhile, monitor_until(10, rescueSuccess)))

A temporal situation cannot be used to define another temporal situation because the conflict or overlap
of two time ranges can make the defined situation meaningless.

SERV1)

/* service specifications */
get_windVelocity([int(ALoc), int(Time)]; [int(Vel)]; rc)
→ serv([loc(ALoc), int(Time)]; [windVel(Vel)]; rc)

SERV2) withinFlightRange([int(ALoc)]; [bool(Result)]; heli)
→ serv([loc(ALoc)]; [bool(Result)]; heli)

SERV3) backToBase([]; []; heli; SAW_heliAgent) → serv([]; []; heli)

SERV4) detect_accident([]; [int(ALoc)]; rc)
→ serv([]; [loc(ALoc)]; rc)

AS1)

/* atomic situation specifications */
serv([loc(ALoc), int(Time)]; [windVel(Vel)]; rc) ∧ Vel < 1000
→ diam(k([loc(ALoc), windVel(Vel)], lowWindVelocity, monitor_until(10,
rescueSuccess)))

AS2) serv([loc(ALoc)]; [bool(Result)]; heli) ∧ Result = true
→ diam(k([], withinRange, monitor_until(50, rescueSuccess)))

AS3) serv([]; [loc(ALoc)]), ALoc >0
→ diam(k([loc(ALoc)], accident_detected, monitor_until(50, rescueSuccess)))

TS)

/* temporal situation specifications*/
∀Time CurrentTime-15 < Time < CurrentTime
∧ k([loc(ALoc), windVel(Vel)], lowWindVelocity)
→ diam(k([loc(ALoc), windVel(Vel)], lowWindForAWhile, monitor_until(10,
rescueSuccess)))

CS1)

/* logical composite situation specifications*/
k([loc(ALoc), windVel(Vel)], lowWindForAWhile]) ∧ k([], withinRange))
→ diam(k([int(ALoc), windVel(Vel)], canUseHeli, monitor_until(10, rescueSuccess)))

CS2) k([loc(ALoc), windVel(Vel)], canUseHeli)
∧ k([loc(ALoc), injuryStatus(IStatus)], criticalInjuryFound)
→ diam(k([loc(ALoc), windVel(Vel), injuryStatus(IStatus)], readyToDispatchHeli,
monitor_until(10, rescueSuccess)))

RB1) /* reactive behavior specifications */
trigger(k([int(ALoc), windVel(Vel)], not(canUseHeli)), serv([];[]; heli)

Fig. 4. Partial SAW specifications in the example

 10

 Specifying Logical Composite Situations
In logical composite situation specifications, each logical composite situation s is composed by atomic

situations, temporal situations and/or other logical composite situations using logical operators ∧, ∨, and/or
¬. For example, a logical composite situation canUseHeli with the meaning of “a helicopter can be used
only when the accident location is within its reachable range and there has been low wind velocity in the
accident location for a while” should be analyzed every 10 time units until the situation rescueSuccess
becomes true. AS3 logic specification for this situation is given below:

k([windVel(Vel)], lowWindForAWhile) ∧ k([], withinRange)
→ diam(k([loc(ALoc), windVel(Vel)], canUseHeli, monitor_until(10, rescueSuccess)))

 Specifying Relations Among Situations and Service Invocations
 The “trigger” relation in our SAW model represents the reactive behavior of the system. Specification

of a trigger relation in AS3 logic is a simple formula in the format trigger(m, s), where method m is
triggered when situation s is true. Similarly, “precondition” relation is represented as precondition(m, s),
where situation s is the precondition of method m. “do” relation is represented as “do(m, s1, s2)”, which
means that invoking m under situation s1 will cause situation s2 becomes true.

6. AUTOMATED DECOMPOSITION OF SAW SPECIFICATIONS

The analysis of a situation can be done by a single SAW agent or multiple SAW agents distributed on
multiple hosts collaboratively. A host h is considered the sink point of a situation s if the final value of s is
calculated on h. Due to various system size and network bandwidth among hosts, different selections of
sink points for situations in SBS will have different impacts on the performance of situation analysis.
Furthermore, reconfiguration of SAW requirements in runtime will require re-synthesis of affected SAW
agents. In particular, changes in the specification of a situation s are most likely affect the situations used to
define s or the situations defined using s. Hence, to reduce the effort of re-synthesizing SAW agents, it is
desirable to let an SAW agent process as many related situations as possible. Hence, the purpose of our
automated decomposition of SAW specifications is to determine the appropriate sink point for each
situation and group the related situations together for SAW agents to perform situation analysis efficiently.

6.1 Domain Knowledge and Decision Factors for Automated Decomposition of
Situations

Decomposition requires domain knowledge of network topology and communication bandwidth
between each pair of hosts in the system. The network topology specification describes which service is on
which host. In AS3 logic, network topology and communication bandwidth are specified as follows:

 serviceHost(s, h): Service s is deployed on host h.
 bw(h1, h2, b): The bandwidth between host h1 and host h2 is b. When h1 = h2, b = ∞.

Generally, domain knowledge specification is provided by domain experts. Based on the SAW
requirement specifications and domain knowledge specification, the decomposition of our approach
depends on the following two factors:

Factor 1) Communication cost
The communication cost for analyzing situation s when host hk is selected as the sink point is denoted as

cost(s, hk), which is given by

1,

1,

1,

0,
1() ,

(,)
1 1(,) ()
(,) (,)

1 1
(,) (,)

k
n

x y
i i k k i

n
k x y

i i kk sys k i
n

y
i i kk sys k i

 H ={h }

n n n >1, s TS, s TS
bw h h

cost s h n n , n >1, s TS, s TS
fr bw h h bw h h

n , n >1, s TS
bw h h bw h h

= ≠

= ≠

= ≠

⎧
⎪

+ × ∉⎪
⎪⎪= ⎨ + + × ∉

×⎪
⎪

+ × ∈⎪
⎪⎩

∑

∑

∑

where H denotes a set of unique hosts related to situation s by providing either the contexts or situational

 11

information for analyzing s, or the service invocations which should be triggered under s for reactive
behaviors of the system; TS denotes a set of temporal situations for the system; hsys is the host, where the
system special service locates; s TS denotes that s is used to define a temporal situation; and s TS
denotes that s is not used to define any temporal situation. cost(s, hk) is calculated in the following four
cases:

1) H contains only one element, which is hk. In this case, situation s will be assigned to hk with no
choice. Hence, cost(s, hk) = 0.

2) s∉TS and s TS. In this case, situation s is not a temporal situation and not used to define any
temporal situation. If s is an atomic situation, then nx is the number of interactions between hk and hi
for collecting context values for s from hi. If s is a logical composite situation, then nx is the number
of interactions between hk and hi for collecting situational information for s from hi. Regardless of
the type of s, ny is the number of interactions between hk and hi for triggering service invocations,
which are provided by services on hi.

3) s∉TS and s TS. In this case, situation s is not a temporal situation, but is used to define a temporal
situation. The communication cost for analyzing s is calculated in the same way as 2). In addition,
the communication cost for recording the information of s in the system special service is

1
(,)k sysfr bw h h×

, where fr denotes the frequency of analyzing s, and hsys is the host where the

system special service locates.

4) s∈TS. In this case, situation s is a temporal situation. The communication cost has two parts: a)
1

(,)k sysbw h h
, the communication cost for retrieving situational information from the system special

service, b)
1,

1
(,)

n

y
i i k k i

n
bw h h= ≠

×∑ , the communication cost for triggering service invocations for s,.

It is obvious that the final selection of sink point for situation s should be the host that requires the
minimum communication cost, compared to all other related hosts.

Factor 2) Situation composition tree
A situation composition tree is a tree that reflects the composition relation of a set of situations used in

defining another situation. Leaf nodes correspond to atomic situations. The edge between a parent node and
its child node represents the definition or composition relation. For a logical composite situation csi, its
child nodes are the situations used to compose csi. For a temporal situation tsi, its child node is the situation
used to define tsi. Every situation belongs to a situation composition tree. If the situation is the root of the
tree, it means that the situation is not used to define any other situation. Otherwise, the situation is used to
define other situations. Situations on the same tree are more likely to be affected by the SAW requirement
reconfiguration in runtime. Hence, situations on the same tree should be grouped together as much as
possible, in order to minimize the effort of re-synthesizing SAW agents.

6.2 Decomposition algorithm

The decomposition of specified situations is conducted in the following two steps: 1) determine the sink
point for each situation, and 2) decompose the situations with the same sink point to subsets based on their
situation composition trees. Situation composition trees can be easily constructed based on situation
definitions. Our decomposition algorithm is shown as follows:

Decomposition algorithm:

Require: a list of situations sList, a list of hosts hList, a list of situation composition trees treeList, SAW
specifications and network topology specifications, the system special service is provided by hostsys

1: Initialize a list L = {}
2: for each situation si in sList do
3: Initialize a list hostListi = {} for si

 12

4: if si is an atomic situation defined by a set of service invocations Ω then
5: for each service invocation νi in Ωi do
6: Get hp of a service σi, such that serviceHost(σi, hp) and σi provides νi, put hp into hostListi,

and record the number nump of hp in hostListi
7: Get hp’ of a service x, which provides external context values for νi , and x ∉Ωi, put hp’

into hostListi and record the number nump of hp’ in hostListi
8: end for
9: else if si is a logical composite situation defined by a set of situation S then
10: for each situation sx in S do
11: Get host(s’, hp) from L for s’ and put hp into hostListi
12: end for
13: else if si is a temporal situation defined by a situation s’ then
14: Get host(s’, hp) from L for s’ and put hp into hostListi
15: end if
16: Find all trigger(si, a) and host(a, hk), and insert hk into hostListi, and record the number numk of

hk in hostListi
17: for each unique hp in hostListi do
18: Calculate the cost for analyzing si and triggering service invocations under si,
19: if si is not a temporal situation and is used to define a temporal situation then
20: Calculate the cost for recording si in the system special service on hostsys
21: else if si is a temporal situation
22: Calculate the cost for retrieving value of s’ from the system special service on hostsys
23: end if
24 Calculate the total cost cost(si, hi) for si if the saw agent for si is deployed on hp
25: end for
26: Get sink point hi for si, such that cost(si, hi) = min(cost(si, ht)), ht ∈ HostListi. If there are

multiple hosts can ensure the minimum cost, choose the one that has fewer situations assigned
27: Insert a formula sinkPoint(si, hi) into L
28: end for
29: for each unique host hk in L do
30: Initialize a set of empty lists AgentListk, each empty list agentki in AgentListk corresponding to a

situation composition tree treei in treeList
31: end for
32: for each situation s in L, where sinkPoint(s, hk) do
33: if s ∈ tree1 ∩ … ∩ treen then
34: Find agentki, where 1≤ i ≤ n, agentki ∈ AgentListk, and agentki contains the minimum

situations
35: Insert s into agentki
36: end if
37: end for

In this algorithm, determining the sink points for situations is done in Lines 1-28 and decomposing

situations with the same sink point is done in Lines 29-37.
Now, let us use the “sea rescue” example to illustrate this algorithm. Suppose service rc is provided by

host hostrc, and service heli is provided by host hostheli. The bandwidth between hostrc and hostheli,
bw(hostrc, hostheli) is assumed to be 30 megabits per second.

First, we initialize an empty list L (Line 1 of Decomposition algorithm). For atomic situation
lowWindVelocity, initialize an empty host list hostListlwv (Line 3 of Decomposition algorithm). From the
specifications in Fig. 4, we know that situation lowWindVelocity is determined by comparing context value
of Vel and a constant 1000. Value of Vel is returned by method get_windVelocity of service rc on host
hostrc. Hence, we insert hostrc into hostListlwv, and initialize the count of hostrc in hostListlwv to be 1 (Line
6). Because ALoc is an external variable used by method get_windVelocity, and ALoc is provided by
service rc on hostrc, we increase the count of hostrc in hostListlwv to 2 (Line 7). No service invocation should
be triggered under situation lowWindVelocity. The sink point of situation lowWindVelocity is hostrc because
hostListlwv only contains hostListrc. We insert sinkPoint(lowWindVelocity, hostrc) in L (Lines 18-27).

 13

Similarly, the sink point for atomic situation accidentDetected is hostrc, the sink point for situation
withinRange is hostheli. For temporal situation lowWindForAWhile, initialize an empty list hostListfaw. We
get sinkPoint(lowWindVelocity, hostrc) from L and insert hostrc into hostListfaw (Line 14). Because no
service invocation should be triggered under lowWindForAWhile, hostListfaw only contains hostrc. Hence,
the sink point of situation lowWindForAWhile is also hostrc. We insert sinkPoint(lowWindForAWhile,
hostrc) in L. In Fig. 4, logical composite situation canUseHeli is composed of withinRange and
lowWindForAWhile. No service invocation should be trigger under canUseHeli. Hence, we can have that
the host list for canUseHeli contains hostrc with count of 1, and hostheli with count of 1 too. The
communication cost for choosing hostr as the sink point for situation canUseHlei and the communication
cost for choosing hostheli as the sink point for situation canUseHlei are calculated as follows:

cost(canUseHeli, hostrc) = 1*1/bw(hostrc, hostheli) =1/30 ≈ 0.033
cost(canUseHeli, hostheli) = 1*1/bw(hostrc, hostheli)= 1/30 ≈ 0.033
Because hostrc has more situations than hostheli, the sink host for situation canUseHeli is hostheli (Line

26). We insert sinkPoint(canUseHeli, hostheli) in L. Choosing sink points for other situations can be done in
the same way. Then, we decompose situations with the same sink point based on their situation
composition trees. In this example, three situations accidentDetected (AS3 in Fig. 4), lowWindVelocity
(AS1 in Fig. 4) and lowWindForAWhile (CS1 in Fig. 4) have the same sink point hostrc. Based on their
definitions, the two situations lowWindVelocity and lowWindForAWhile belong to the same situation
composition tree, and hence the two situations are grouped together. Therefore, accidentDected is analyzed
by an SAW agent, and the two situations lowWindVelocity and lowWindForAWhile are analyzed by another
SAW agent.

6.3 Complexity analysis of the decomposition algorithm

To analyze the complexity of our decomposition algorithm, we first give the following two definitions:

The length of an atomic situation (LAS) is the number of service invocations used to collect contexts for
analyzing the atomic situation. The length of a logical composite situation (LLCS) is the number of
situations used to compose the logical composite situation in the logical composite situation's definition.

Theorem 1 (complexity of the decomposition algorithm): Given p situations, and q services, w hosts, the
complexity of situation decomposition is O(p*q+w*k), where k is the number of situation composition trees
in the system.

Proof: Assume that there are x atomic situations, y logical composite situations, z temporal situations, the
maximum LAS is las, the maximum LLCS is llcs, and under a situation at most r service invocations can be
triggered. To find the sink point for each atomic situation, at most q*(las+r)2 steps are needed. To find the
sink point for each logical composite situation, at most q*(llcs+r)2 steps are needed. To find the sink point
for each temporal situation, at most q*r2 steps are needed. Decomposing situations on w sink points based
on k situation composition trees, it takes at most w*k steps. Because las, llcs and r are usually small numbers,
the total complexity is O(x*q*(las+r)2+y*q*(llcs+r)2+z*q*r2+w*k)= O((x+y+z)*q+w*k) = O(p*q+w*k).

7. AUTOMATED SYNTHESIS OF SAW AGENTS

7.1 Representing SAW agents using AS3 calculus

Instead of directly synthesizing SAW agents in platform-dependent programming languages, such as
C++, Java and C#, our automated agent synthesis approach first synthesizes the AS3 calculus terms, which
define SAW agents. The main advantage of using AS3 calculus is to provide us platform-independent
models of the agents, which capture the essential processes of context acquisition, situation analysis and
reactive behavior triggering. These models can later be used to verify the synthesized agents by a model
checker. Platform-specific compilers can be developed to compile AS3 calculus terms to executable code
on different platforms. We have developed a compiler to compile AS3 calculus terms to agents in Java on
SINS platform (Bharadwaj, 2003). Here, we will focus on the synthesis algorithms of SAW agents in AS3
calculus terms.

 Before presenting our SAW agent synthesis algorithms, we first need to examine how SAW agents are
defined using AS3 calculus. Fig. 5 depicts the specifications of the SAW agent, saw_heliAgent, in our “sea

 14

rescue” example. The saw_heliAgent monitors three situations withinRange (AS2 in Fig. 4), canUseHeli
(CS1 in Fig. 4), and readyToDispatchHeli (CS2 in Fig. 4). The main process of saw_heliAgent is defined
by L16-L18 in Fig. 5. L17 instantiates three sub-processes, withinRange_Agent, canUseHeli_Agent and
readyToDispatchHeli_agent, in parallel to analyze AS2, CS1 and CS2, respectively. An input action for
collecting the information of accidentDetected situation is performed in L17 before instantiating
winthinRange_Agent. L18 recursively executes the saw_heliAgent.

The sub-process canUseHeli_Agent is defined by L8-L14. It first collects information on situations

lowWindForAWhile (S1) and withinRange (S2) in L9. Then, the result of analyzing situation canUseHeli is
generated based on the truth value of S1 and S2 (L10-L12). In addition, method backToBase is triggered in
L12.

 This example illustrates the following important aspects of defining SAW agents using AS3 calculus:
(a) The input and output actions in AS3 calculus are used to represent communications among SAW

agents. When an SAW agent determines the value of a situation s, it sends all the related contexts
and the value of s through a communication channel also named s. All other agents interested in s
will receive the information from channel s. Hence, SAW agents can be easily reused since new
applications can obtain situational information based on the names of situations.

(b) The parallel composition and non-deterministic choice (see Table 1) in AS3 calculus are used when
multiple input actions need to be performed by an SAW agent without predefined execution orders.
Which operator should be used is determined by our agent synthesis algorithms.

 (c) The method invocation and atomic constraint evaluation in AS3 calculus are used to represent
operations on contexts.

 (d) The timeout and recursive processes in AS3 calculus are used to represent periodical context
acquisition and situation analysis.

7.2 The SAW agent synthesis algorithms

Given a set of SAW specifications, our SAW agent synthesis process will do the following:
1) For each specified situation s, if s is an atomic situation, synthesize a sub-process for s using SynAtom

algorithm. If s is a logical composite situation, synthesize a sub-process for s using SynComp algorithm. If
s is a temporal situation, synthesize a sub-process for s using SynTemporal algorithm.

2) For each SAW agent, synthesize its main process to initialize the sub-processes for all the situations
processed by the SAW agent using SynMain algorithm.

L1
L2
L3
L4
L5
L6
L7

L8
L9
L10
L11
L12
L13
L14

L15

L16
L17

L18

fix withinRange_Agent(integer ALoc) =
 let bool Result = heli:withinRange(integer ALoc) instantiate
 if Result = true
 then ch withinRange<true>
 else ch withinRange<false>.

(time 50. withinRange_Agent(integer ALoc)
 plus ch rescueSuccess(string Status) . zero)

||
fix canUseHeli_Agent =

ch lowWindForAWhile(bool S1) par ch withinRange(bool S2).
if S0=true && S1 = true && S2 = true

 then ch canUseHeli<integer ALoc, integer Vel, true>
 else {ch canUseHeli<integer ALoc, integer Vel, false> . heli:backToBase()}.

 { time 10.canUseHeli_Agent(integer ALoc, bool S0)
 plus ch rescueSuccess(string Status) . zero }

||
fix readyToDispatchHeli_Agent =
 ... …
||
fix saw_heliAgent =

{ch accidentDetected(integer ALoc, bool S0) . withinRange_Agent(integer ALoc) } par
canUseHeli_Agent par readyToDispatchHeli.

saw_heliAgent

Fig. 5. An example SAW agent in AS3 calculus

 15

These algorithms are given below:

SynAtom algorithm:
Require specification of an atomic situation aSi in the format of
Defi → k([x0, … , xn] aSi, monitor_until(fi, condi))
1: Initialize an empty list aLi to store the operations for analyzing aSi, and two empty lists reqLi and acqLi

to store the required and acquired variables of aSi.
2: for each atomic formula Tj in Defi do
3: if Tj is serv(Ij;Oj;Sj) then
4: Find the method signature Mj from the specification of service Sj by matching Ij and Oj, and add

Mj to aLi. Append Ij and Oj to reqLi and acqLi respectively.
5: else if Tj is K(Oj;SMj), where SMj is a service name concatenated with a method name then
6: Add a an input action to aLi, and append Oj to acqLi
7: else if Tj is an atomic constraint then
8: Generate an If-then-else statement, in which the condition is a constraint evaluation for Tj, an

output action ch aSi(x0, … , xn, true) is in the then branch, an output action ch aSi(x0, … , xn,
false) in the “else” branch

9: Iterate reactive behavior specifications to find actions to be triggered in aSi or ¬aSi, and add the
method invocations to the “then” or “else” branch, and append it to aLi

10: end if
11: end for
12: Get input perimeters for instantiating this sub-process by removing all variables in acqLi from reqLi
13: Append (time fi .aSi_agent(reqi) for recursion to aLi
14: if aLi is used to define a temporal situation then
15: Get system’s current time Now and append .appendHistory(aSi, SituData, Now) to aLi, where

SituData contains x0, … , xn and aSi’s value
16: end if
17: Append plus ch condi(bool Status) . zero) to the end of aLi

SynComp algorithm:
Require specification of an logical composite situation cSi in the format of:
Defi → k([x0, … , xn], cSi, monitor_until(fi, condi))
1: for each formula k([c0, …, cj], Sj) in Defi do
2: Generate an input action ch Sj (x0, … , xn, Sj_result) to get the information of Sj
3: if Sj is the name of a situation then
4: Generate a condition expression in the format of (Sj_result = true)
5: else if Sj is in the form not(Sj’), where Sj’ is the name of a situation then
6: Generate a condition expression in the format of (Sj_result = false)
7: end if
8: end for
9: if a conjunction (∧) in Defi is used then
10: The corresponding input actions are concatenated using “par”, and the condition expressions are

concatenated using “and”
11: else if a disjunction (∨) in Defi is used then

12: The corresponding input actions are concatenated using “plus”, and the condition expressions are
concatenated using “or”

13: end if

14: Generate if-then-else statements with the generated conditional evaluations, and placed them after all

 16

the input actions as line 8 in SynAtom
15: Output actions for sending the situation analysis result and actions to be triggered are added on proper

branches as line 9 in SynAtom
16: Generate statement for recursion and termination as lines 13-17 in SynAtom

SynTemporal algorithm:
Require specification of a temporal situation tSi in the format of

∀ T (or ∃ T), CurrentTime - ϖ < T < CurrentTime - ϖ + ε, k([c0, …, cj], Sj)
→ k([x0, … , xn], tSi, monitor_until(fi, condi))

1: Generate statement for invoking service chkSituP(Sj, ω, ε) or chkSituH(Sj, ω, ε)
2: Generate statement for invoking service retrieveRelatedData(Sj, ω, ε)
3: Generate if-then-else statements with the generated conditional evaluations, and placed them after all

the input actions as line 8 in SynAtom
4: Output actions for sending the situation analysis result and actions to be triggered are added on proper

branches as line 9 in SynAtom
5: Generate statement (time fi .tSi_agent(reqi) plus ch condi(bool Status) . zero)

SynMain algorithm:
Require a list of situations L for agent agenti

1: for each situation s in L

2: if s needs input perimeters p1, …, pn for instantiating its corresponding sub-process then
3: Find a set of situations S = {sk, …, sj} from situation specifications, such that they provide

{p1, …, pn} as outputs
4: for each s’ in S
5: Generate an output action ch s’(contextType pi, … , contextType pm, bool S’)
6: end for
7: Concatenate output actions using “par”
8: Generate a statement of . s_agent(contextType p1, … , contextType pn)
9: else
10: Generate s_agent
11: end if
12: end for
13: Concatenate statements using par
14: Generate a statement of . agenti for recursion

We will again use the “sea rescue” example to illustrate the above process. Based on decomposition
results, saw_heliAgent monitors three situations withinRange (AS2 in Fig. 4), canUseHeli (CS1 in Fig. 4),
and readyToDispatchHeli (CS2 in Fig. 4). Hence, sub-process withinRange_Agent for analyzing situation
winthinRange is synthesized using SynAtom.

Initially, the list aL2 for storing the operations for analyzing (AS2) is empty. Since the first atomic
formula serv([loc(Aloc)]; [bool(Result)]; heli) in (AS2) matches the case in Line 4 of SynAtom, the
corresponding method signature shown in (SERV2) is found and appended to aL2. The list reqL2 for storing
the required contexts for analyzing (AS2) and the list acqL2 for storing the contexts collected by
saw_heliAgent are also updated. Now, we have reqL2 = [loc(Aloc)], acqL2 = [bool(Result)], aL2 =
[withinFlightRange([int(ALoc)]; [bool(Result)]; heli)].

Since the second atomic formula Result = true in (AS2) matches the case in Line 7 of SynAtom, an if-
then-else statement is generated following Lines 8-9. Now, aL2 = [withinRange(int(ALoc); bool (Result);
heli), if Result=true then ch withinRange<true> else ch withinRange<false>].

 17

Since there is no more atomic formula in (AS2), the loop from Line 2 to Line 10 ends. Since reqL2
contains variable ALoc, which is not in acqL2, an input parameter is declared for withinRange_Agent (L1 in
Fig. 5).

Next, AS3 calculus terms for the operations currently in aL2 need to be generated and properly ordered.
The calculus term for withinRange([int(ALoc)]; [bool(Result)]; heli) is the following beta reduction in AS3
calculus:

let bool Result=heli:withinFlightRange(integer ALoc) instantiate P ,
where P denotes a process of subsequent operations.

In this example, the subsequent operation is the if-then-else statement in aL2 since variable Result used
in the if-then-else statement is the output from method withinFlightRange. Hence, P is replaced by the if-
then-else statement, and L2-L5 in Fig. 5 are generated. Finally, since monitor_until(50, rescueSuccess) is
specified in (AS2), L6-L7 in Fig. 5 are generated following Lines 13-17 of SynAtom.

For logical composite situation “canUseHeli” (CS1 in Fig. 4), a sub-process is generated using
SynComp algorithm. By scanning CS1, the following formulas are found:

• k([], withinRange)
• k([loc(ALoc), windVel(Vel)], lowWindForAWhile)

Hence, the corresponding input actions and condition expressions, which are generated following Lines
3-4 of SynComp, are given below:

Input Actions Condition Expression
ch lowWindForAWhile(bool S1) S1 = true
ch withinRange(bool S2) S2 = true

As shown in L9-L12 in Fig. 5, following Lines 1-13 of SynComp, the input actions are concatenated

using par, and the subsequent condition evaluation is generated. Finally, L13-L14 in Fig. 5 are generated
since monitor_until(10, rescueSuccess) is specified in (CS1). Similarly, readyToDispatchHeli_agent can be
synthesized.

After the generation of withinRange_Agent for (AS2), canUseHeli_Agent for (CS1) and
readyToDispatchHeli_agent for (CS2), the main process of saw_heliAgent is synthesized using SynMain.

In SynMain, if a situation monitored by an SAW agent depends on the context data collected by other
SAW agents, proper input actions will be generated by SynMain, and the data retrieved by input actions
will be used to instantiate the sub-process for monitoring the situation. The input actions and subsequent
instantiation statement of sub-processes are concatenated using par.

For (AS2), its required input list reqL2 contains variable ALoc. By searching the situation specifications,
situation accidentDetected provides the value of ALoc. Hence, an input action in L17 in Fig. 5 is
synthesized to collect ALoc. Then, the sub-process for analyzing situation withinRange (AS2) is
instantiated with an input parameter (ALoc) in Fig. 5. Similarly, we can also generate the instantiation
statement for the sub-process that monitors situation canUseHeli (CS1) and the sub-process that monitors
situation readyToDispatchHeli. Finally, the instantiation statements for the sub-processes are composed
using par in L17 in Fig. 5. A recursion statement is added at the end of saw_heliAgent.

7.3 Complexity analysis of the SAW agent synthesis algorithms

Theorem 2 (complexity of agent synthesis): Given p situations, and q services, the complexity of agent
synthesis is O((p+2q)*p)..

Proof: Assume that there are x atomic situations, y logical composite situations, z temporal situations, the
maximum LAS is las, the maximum LLCS is llcs, the maximum number of trigger relations for a situation is
g, and the maximum number of input parameters for a situation is e. For synthesizing sub-processes for x
atomic situations, it takes O(x*(las+g)*q) steps. For synthesizing sub-processes for y composite situations,
it takes O(y*(llcs+g*q)) steps. For synthesizing sub-processes for z temporal situations, it takes O(z*g*q)
steps. To synthesize the main processes, it takes p*(e*p+g*q) steps. Since las, llcs, g, e are usually small
numbers, the total complexity is O(x*(las+g)*q)+y*(llcs+g*q)+ z*g*q + p*(e*p+g*q) = O((p+2q)*p).

 18

8. EVALUATIONS

8.1 Evaluating our GUI tool

Experiments have been conducted to evaluate our overall approach. Evaluating the usability of our GUI
tool is based on case studies. We asked a novice user and an expert user to use our SAW tool. They are
required to model the SAW requirements of a situation-aware application. The average time spent for
modeling different types of SAW requirements by the two users is shown in Table 4.

The time needed for modeling an atomic situation increases as LAS increases. The time needed for
modeling a logical composite situation increases as LLCS increases. However, LAS is usually smaller than
20 because defining an atomic situation generally does not involve many service invocations. Developers
can often keep LLCS small by reusing situations previously defined in the specifications of new situations.

8.2 Evaluating our decomposition and SAW agent synthesis algorithms

 Our decomposition and SAW agent synthesis algorithms were implemented using Prolog. A test
generation tool was developed using Java to randomly generate specifications of services, situations and
relations in AS3 logic. Programs were run on a desktop with Pentium D CPU 3.00 GHz and 2 G RAM.

Fig. 6 shows the time comparison of decomposing and synthesizing SAW agents for 5 to 1000 situations
(LAS = [1, 3], LLCS = [2, 4]) with different percentages of logical compositions. The solid line shows that
it takes about 2.5 and 22 seconds to decompose and synthesize 100 and 1,000 situations with atomic and
temporal situations only, respectively. The dotted line shows that it takes less than 1 second and 10 minutes

Table 4
Average time for modeling different types of SAW requirements

Service Atomic situation Logical Composite
Situation

Temporal
Situation

Relation

1 min/service 2 min/situation 1 min/situation 0.7
min/situation

0.5 min/relation

Fig. 6. Decomposition and agent synthesis time comparison

 19

to decompose and synthesize 100 and 1000 situations, respectively, with 1/3 logical composite situations,
and 2/3 atomic situations and temporal situations. It is noted that less time is needed to decompose and
synthesize SAW agents for situations with logical composite situations than that without logical composite
situations because the number of situation composition trees is smaller for situations with logical
composition situations.

Fig. 7 shows the decomposition and agent synthesis time for 80 situations containing 1/3 logical

composite situations with LLCS = 3 and 2/3 atomic situations with LAS = [1, 15] and temporal situations. It
takes about 2.5 seconds to decompose and synthesize 80 situations with 1/3 situations being logical
composite situations and LAS = 15. Fig. 8 shows the decomposition and agent synthesis time for 80
situations containing 1/3 logical composite situations with LLCS = [2, 15] and 2/3 atomic situations with

Fig. 8. Decomposition and agent synthesis time for 80 situations with different LLCS

Fig. 7. Decomposition and agent synthesis time for 80 situations with different LAS

 20

LAS = 2 and temporal situations. It takes about 1.5 seconds to decompose and synthesize 80 situations with
1/3 situations being logical composite situations and LLCS = 15.

The above evaluation results show that our decomposition and agent synthesis algorithms are quite
efficient. This is especially important for runtime system adaptation. When a host or some SAW agents on
the host are not available or the user’s QoS requirements are changed, SAW agents can be re-synthesized in
a timely manner using our approach to replace the original ones.

9. CONCLUSIONS AND FUTURE WORK

 In this paper, we have presented a logic-based approach for specification, decomposition, and agent
synthesis for situation-aware SBS. Our approach is based on our SAW model and AS3 calculus and logic.
SAW requirements can be analyzed and represented graphically using our SAW model and GUI tool. The
graphical representation of SAW requirements can be automatically translated to declarative AS3 logic
specifications. An algorithm for decomposing SAW specifications has been developed based on network
topology, communication bandwidths among various hosts, and composition relations among situations.
Algorithms for automated SAW agent synthesis were also presented. Our experimental results show that
our GUI tool has good usability, and the decomposition and agent synthesis algorithms are efficient.
However, so far, the SAW agents are only capable of analyzing truth-value based situations. Future work
includes extensions for handling fuzzy situations, semantic-based context discovery, and privacy protection
in SAW.
Acknowledgment
This work was supported by the DoD/ONR under the Multidisciplinary Research Program of the
University Research Initiative, Contract No. N00014-04-1-0723.

References
Appel, A., 1992. Compiling with Continuations. Cambridge University Press.
Bharadwaj, R., 2003. Secure Middleware for Situation-Aware Naval C2 and combat Systems. Proc. 9th

Int’l Workshop on Future Trends of Distributed Computing System (FTDCS 2003), 233-240.
Blackburn, P., deRijke, M., Venema, Y., 2003. Modal Logic. Cambridge University Press.
Booth, D., Haas, H., McCabe, F., Newcomer, E., et al., 2004. Web Services Architecture. Available at:

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.
Cardelli, L., Gordon, A. D., 2000. Mobile Ambients. Theoretical Computer Science, vol. 240(1), 177-213.
Caromel, D., Henrio, L., 2005. A Theory of Distributed Objects. Springer Verlag.
Chan, A. T. S., Chuang, S. N., 2003. MobiPADS: a Reflective Middleware for Context-aware Computing.

IEEE Trans. on Software Engineering, vol. 29(12), 1072-1085.
Chen, H., Finin, T., Joshi, A., 2003. An Ontology for Context-Aware Pervasive Computing Environments.

Special Issue on Ontologies for Distributed Systems, Knowledge Engineering Review, vol.18, 197-207.
Dey, A. K., Abowd, G. D., 2001. A Conceptual Framework and a Toolkit for Supporting the Rapid

Prototyping of Context-aware Applications. Human-Computer Interaction, vol. 16(2-4), 97-166.
Huth, M., Ryan, M., 2004. Logic in computer science: modeling and reasoning about systems. Cambridge

University Press.
Kifer, M., Lausen, G., Wu, J., 1995. Logical foundations of object-oriented and frame-based languages’.

JACM, 42(4), 741-843.
Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R., 1997. GOLOG: A Logic Programming

Language for Dynamic Domains. Journal of Logic Programming, vol.31, no. 1-3, 59-84.
Matheus, C. J., Kokar, M. M., Baclawski, K., 2003. A Core Ontology for Situation Awareness, Proc. 6th

Int’l Conf. on Information Fusion, 545 –552.
May, D., Shepherd, R., 1984. The Transputer Implementation of Occam. Proc. Int'l Conf. on Fifth

Generation Computer Systems, 533-541.
McCarthy, J., Hayes, P. J., 1969. Some Philosophical Problems from the Standpoint of Artificial

Intelligence. Machine Intelligence 4, 463-502.
Milner, R., 1999. Communicating and Mobile Systems: the π-Calculus. Cambridge University Press.
Pinto, J.A., 1994. Temporal Reasoning in the Situation Calculus, PhD Thesis, University of Toronto,

Toronto.

 21

Ranganathan, A., Campbell, R. H., 2003. A Middleware for Context-aware Agents in Ubiquitous
Computing Environments. Proc. ACM Int’l Middleware Conf., 143-161.

Reiter, R., 2001. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical
Systems. MIT Press.

Roman, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R. H., Nahrstedt, K., 2002. A middleware
infrastructure for active spaces. IEEE Pervasive Computing, vol. 1(4), 74-83.

Sorensen, M. H., Urzyczyn, P., 2006. Lectures on the Curry-Howard Isomorphism. Elsevier.
Yau, S. S., Karim, F., Wang, Y., Wang, B., Gupta, S. K.S., 2002. Reconfigurable Context-Sensitive

Middleware for Pervasive Computing. IEEE Pervasive Computing, vol. 1(3), 33-40.
Yau, S. S., Wang, Y., Karim, F., 2002. Development of Situation-Aware Application Software for

Ubiquitous Computing Environments. Proc. 26th IEEE Int'l Computer Software and App. Conf., 233-
238.

Yau, S. S., Huang, D., Gong, H., Seth, S., 2004. Development and Runtime Support for Situation-Aware
Application Software in Ubiquitous Computing Environments. Proc. 28th Annual Int'l Computer
Software and Application Conference (COMPSAC 2004), Hong Kong, 452-457.

Yau, S. S., Huang, D., Gong H., Davulcu, H., 2005. Situation-Awareness for Adaptable Service
Coordination in Service-based Systems. Proc. 29th Annual Int'l Computer Software and Application
Conference (COMPSAC 2005), 107-112.

Yau, S. S., Mukhopadhyay, S., Huang, D., Gong, H., Davulcu, H., Zhu, L., 2005. Automated Agent
Synthesis for Situation-Aware Service Coordination in Service-based Systems. Technical Report, ASU-
CSE-TR-05-008. http://dpse.eas.asu.edu/AS3/papers/ASU-CSE-TR-05-009.pdf

Yau, S. S., Gong, H., Huang, D., Zhu, L., 2006. Automated Agent Synthesis for Situation Awareness in
Service-based Systems. Proc. 30th Annual Int'l Computer Software and Application Conference
(COMPSAC 2006), 503-512.

Yau, S. S., Huang, D., Gong, H., Yao, Y., 2006. Support for Situation-Awareness in Trustworthy
Ubiquitous Computing Application Software. Journal of Software Practice and Engineering (JSPE),
893-921.

Yau, S. S., Mukhopadhyay, S., Davulcu, H., Huang, D., Gong, H., Singh, P., Gelgi, F., to be published.
Automated Situation-Aware Service Composition in Service-oriented Computing. International Journal
of Web Services Research (IJWSR).

Stephen S. Yau is currently the director of Information Assurance Center and a professor in the
Department of Computer Science and Engineering at Arizona State University, Tempe, Arizona, USA. He
served as the chair of the department from 1994 to 2001. He was previously with the University of Florida,
Gainesville and Northwestern University, Evanston, Illinois. He served as the president of the Computer
Society of the IEEE (Institute of Electrical and Electronics Engineers) and the editor-in-chief of IEEE
Computer magazine. His current research is in distributed and service-oriented computing, adaptive
middleware, software engineering and trustworthy computing. He received the Ph.D. degree in electrical
engineering from the University of Illinois, Urbana. He is a life fellow of the IEEE and a fellow of
American Association for the Advancement of Science. Contact him at yau@asu.edu.
Haishan Gong is a Ph.D. candidate in the Computer Science and Engineering Department at Arizona State
University. Her research interests include situation-aware software development, and ubiquitous
computing. She received her BS in computer science from Zhejiang University, China. Contact her at
Haishan.Gong@asu.edu.
Dazhi Huang is a Ph.D. student in the Department of Computer Science and Engineering at Arizona State
University. His research interests include middleware, mobile and ubiquitous computing, and workflow
scheduling in service-oriented computing environments. He received his BS in computer science from
Tsinghua University in China. Contact him at Dazhi.Huang@asu.edu.
Wei Gao is a Ph.D. student in the Department of Computer Science and Engineering at Arizona State
University. His research interests include mobile and ubiquitous computing, wireless network architecture,
and network optimization. He received his B. E. degree in electrical engineering from University of
Science and Technology, China. Contact him at W.Gao@asu.edu.
Luping Zhu is a Ph.D. candiate in the Computer Science and Engineering Department at Arizona State
University. His research interests include distributed systems, software deployment. He received his BS
from Xian Jiaotong University, China, MS from Zhejiang University, China, both in computer science.
Contact him at Luping.Zhu@asu.edu.

