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ABSTRACT 

Service-based systems are distributed computing systems with the major advantage of enabling rapid 
composition of distributed applications, such as collaborative research and development, scientific 
computing, e-business, health care and homeland security, regardless of the programming languages and 
platforms used in developing and running various components of the applications. In dynamic service-
oriented computing environment, situation awareness (SAW) is needed for system monitoring, adaptive 
service coordination and flexible security policy enforcement. To greatly reduce the development effort of 
SAW capability in service-based systems and effectively support runtime system adaptation, it is necessary 
to automate the development of reusable and autonomous software components, called SAW agents, for 
situation-aware service-based systems. In this paper, a logic-based approach to declaratively specifying 
SAW requirements, decomposing SAW specifications for efficient distributed situation analysis, and 
automated synthesis of SAW agents from decomposed specifications is presented. This approach is based 
on AS3 calculus and logic, and our declarative model for SAW. Evaluation results of our approach are also 
presented. 
 
Keywords: Service-based systems, situation awareness, decomposition, agent synthesis, AS3 calculus and 
logic.  

1. INTRODUCTION 

Service-Based Systems (SBS) are distributed computing systems with the major advantage of enabling 
rapid composition of distributed applications, regardless of the programming languages and platforms used 
in developing and running different components of the applications. SBS have been applied in many areas, 
such as collaborative research and development, e-business, health care, environmental control, military 
applications and homeland security (Booth, et al., 2004). In these systems, situation awareness (SAW), 
which is the capability of being aware of situations and adapting the system’s behavior based on situation 
changes (Yau, et al., 2004; Yau, et al., 2006b), is often needed for system monitoring, adaptive service 
coordination and flexible security policy enforcement (Yau, et al., 2007). A situation is a set of contexts in 
a system over a period of time that affects future system behavior for specific applications, and a context is 
any instantaneous, detectable, and relevant property of the environment, the system, or the users (Yau, et al., 
2002ab).  

A large-scale SBS often needs to support various applications simultaneously. These applications often 
need to share and reuse situation information in the system for providing better QoS. Hence, it is necessary 
to provide reusable SAW capability in SBS. To greatly reduce the development effort of situation-aware 
application software in SBS as well as supporting runtime system adaptation, it is necessary to automate the 
development of reusable and autonomous software components, called SAW agents, for performing various 
tasks in runtime to achieve SAW capability. These tasks include the acquisition of relevant contexts, the 
analysis of situation changes, and the decision making on triggering proper actions in response to situation 
changes.  

Due to efficiency and dependability considerations, such tasks should not be performed by a centralized 
SAW agent in a large-scale SBS since SBS often involves a large number of contexts, situations, and 
services distributed over networks. On the other hand, performing these tasks on distributed SAW agents in 
a large-scale SBS requires proper coordination of the SAW agents so that the entire system can have a 
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consistent and complete view of situation changes in the system. Communication overhead incurred from 
such coordination may have significant impact on system performance. Hence, it is necessary to properly 
distribute the tasks for achieving SAW to distributed SAW agents in SBS. Manually decomposing the 
situations into subsets and specifying which SAW agent should analyze which subset of situations is time-
consuming and error-prone. Furthermore, such a manual process is tedious and very difficult for developers 
to produce SAW agents with good performance of distributed situation analysis. Hence, it is desirable that 
the decomposition can be automatically done in such a way that the SAW agents can perform distributed 
situation analysis efficiently. 

In this paper, we will present an approach to logic-based specification, automated decomposition and 
agent synthesis for situation-aware SBS. Our approach is based on our declarative SAW model (Yau, et al., 
2005a), and AS3 calculus and logic for rapid development of Adaptable Situation-Aware Secure Service-
Based (AS3) systems (Yau, et al., 2007). SAW requirements are analyzed and graphically specified using 
our SAW model and a Graphic User Interface (GUI) tool, and automatically translated to declarative AS3 
logic specifications. We have developed an algorithm to decompose the generated AS3 logic specifications 
to appropriate subsets based on the distribution of context sources, system and network status, as well as 
the composition relations among situations. For each subset of AS3 logic specifications, an SAW agent 
described in AS3 calculus terms will be automatically synthesized to perform the necessary tasks to meet 
the corresponding subset of SAW requirements. 

2. CURRENT STATE OF THE ART 

Substantial research has been done on SAW in artificial intelligence, human-computer interactions and 
data fusion community. Existing approaches may be divided in two categories: One focuses on modeling 
and reasoning SAW (McCarthy, et al., 1969; Pinto, 1994; Reiter, 2001; Lausen, et al., 1995; Matheus, et al., 
2003; Chen, et al. 2003), and the other on providing toolkit, framework or middleware for development and 
runtime support for SAW (Yau, et al., 2004;  Yau, et al., 2006b; Dey and Abowd, 2001; Roman, et al., 
2002; Ranganathan and Campbell, 2003; Chan and Chuang, 2003).  

In the first category, Situation Calculus (McCarthy, et al., 1969) and its variants (Pinto, 1994; Reiter, 
2001) are used to represent dynamic domains, but the definitions of “situation” used in Situation Calculus 
and its variants are quite different. McCarthy (McCarthy, et al., 1969) considers a situation as a complete 
state of the world, while Reiter et al. (Reiter, 2001) considers a situation as a state of the world resulting 
from a finite sequence of actions. McCarthy’s definition leads to the Frame problem because a situation 
cannot be fully described. Reiter’s definition makes a situation totally determined by executed actions. 
GOLOG (Levesque 1997) is a logic programming language, and allows programs to reason about the state 
of the world and to consider the effects of various possible courses of action before committing to a 
particular behavior. However, it only works with completely known initial situations. Frame Logic (abbr., 
F-Logic) (Lausen, et al., 1995) was developed by Kifer et al., and has the modeling capabilities of object-
oriented concepts. It can be used for specifying and reasoning SAW requirements. Matheus et al. presented 
a core ontology for SAW (Matheus, et al., 2003) to provide a basis for building situations. A situation here 
is considered as a collection of situation objects, including objects, relations and other situations. Temporal 
and spatial relationships of situations can be specified using it. CoBrA Ontology (Chen, et al. 2003) is 
intended for modeling context knowledge and enabling knowledge sharing in intelligent spaces. It defines a 
set of vocabularies for describing people, agents, places, etc. in an intelligent meeting room system. 
However, these ontologies are limited to representing and reasoning SAW requirements.  

In the second category, Context Toolkit (Dey and Abowd, 2001) provides a set of ready-to-use context 
processing components (called widgets) and a distributed infrastructure that hosts the widgets for 
developing context-aware applications. GAIA (Roman, et al., 2002; Ranganathan and Campbell, 2003), 
which is a distributed middleware infrastructure provides development and runtime support for context-
aware applications in ubiquitous computing environment. It manages the resources and services that are 
used by applications, provides a component-based application framework for constructing, running or 
adapting applications. MobiPADS (Chan and Chuang, 2003) is a reflective middleware designed to support 
dynamic adaptation of context-aware services based on application’s runtime reconfiguration. Services are 
configured and chained together to provide augmented services to mobile applications. RCSM (Yau, et al., 
2004, 2006b) provides the capabilities of context acquisition, situation analysis and situation-aware 
communication management, and a middleware-based situation-aware application software development 
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framework. However, no existing approaches can have automated synthesis of software components for 
runtime support for SAW in service-oriented computing environment.    

3. BACKGROUND 

 In this section, we will highlight the architecture of our AS3 systems (Yau, et al., 2007), where SAW 
agents are used to provide runtime support for context acquisition and situation analysis (Yau, et al., 2005a). 

We will also summarize the key concepts of 
our declarative SAW model (Yau, et al., 
2005a), and AS3 calculus and logic (Milner, 
1999), which are used in the development of 
our agent synthesis approach.  

AS3 systems are collections of services, 
users, processes and resources, which act to 
achieve users’ goals under dynamic 
situations without violating their security 
policies. Fig. 1 shows the architecture of an 
AS3 system, in which organizations publish 
their capabilities as services. Each service 
provides a set of methods as “actions” in the 
AS3 system. SAW Agents collect context 
data periodically, analyze situations based 
on context data and executed action results, 

trigger appropriate actions based on situations to provide reactive behavior of the system, and provide 
situational information to other agents for situation analysis, service coordination, and security policy 
enforcement. Security Agents enforce relevant security policies in a distributed manner based on the current 
situation. Mission Planning Service and Workflow Scheduling Service generate and schedule workflows to 
achieve users’ goals based on security policies, situations and available resources. Workflow Agents 
coordinate the execution of workflows based on situational information. 

3.1 A Declarative Situation Awareness (SAW) Model 

In our declarative SAW model, an ontology is defined for the essential entities for representing SAW 
and the relations among these entities (Yau, et al., 2005a, 2006b). The advantages of the ontology are that it 
describes an abstract and application-independent view of SAW, and can be easily shared or extended to 
model SAW requirements in different application domains. The ontology contains the following entities: 

 A context has a unique context name, a context type and a context value at a time. 
 A context comparator is a binary operator returning a Boolean value. 
 A service has a unique service name, and is on a host. 
 A service invocation is provided by a service, and has a unique method name, accepts inputs as 

arguments and returns outputs as context values. 
 An argument can be a constant in the context value domain, or a context variable whose value is 

obtained through service invocations at runtime. 
 An atomic constraint is used for comparing two arguments using a context comparator. 
 A situation can be an atomic situation, a logical composite situation or a temporal situation. The 

value of a situation is a Boolean value. 
 An atomic situation is a situation defined using a set of service invocations and an atomic constraint, 

and cannot be decomposed into any other atomic situations. 
 A situation operator is a logical operator or a temporal operator. 
 A temporal operator is either P (had been true over a period time in the past), or H (was true 

sometime in the past) defined over a period of time in the past. 
 A logical composite situation is a situation recursively composed of atomic situations or other 

logical composite situations or temporal situations using logical operators, such as ∧ (conjunction), 
∨ (disjunction), ¬ (negation). 
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Fig. 1. The architecture of an AS3 System. 
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 A temporal situation is a situation defined 
by applying a temporal operator on a 
situation over a period of time. The 
situation used to define a temporal 
situation can be either an atomic situation 
or a logical composite situation, which is 
not composed by any temporal situations. 

Three basic relations, precondition, do, and 
trigger, are defined among situations and 
service invocations. Relation precondition 
describes a situation is a precondition of a 
service invocation. Relation do describes the 
effect of a service invocation. Relation trigger 
represents a reactive behavior of the system. In 
SBS, we assume that there are services available 
for monitoring and providing context values. 
Hence, contexts can be done through service 
invocations. 

Based on our SAW model, developers can 
analyze the SAW requirements of an application 

as follows:  
i) Based on the functionality of the application required by users and the specifications of the 

services available in SBS, developers identify the services to be used in the application.  
ii) Developers identify the contexts and all the methods (service invocations) provided by the 

services found in (i), as well as constants and context comparators used in the application.  
iii) Following the basic relations in our SAW model, developers identify the situations relevant to the 

service invocations identified in (ii), and identify the relations among these situations and the 
service invocations.  

iv) Developers extract atomic situations from the situations identified in (iii) if the identified 
situations contain any situation operators.  

v) Developers construct atomic situations using the service invocations, contexts, constants, and 
context comparators identified in (ii).  

Our SAW model is language-independent and can be translated to specifications of various formal 
languages, such as F-Logic and AS3 logic. To facilitate the specification of SAW requirements, we have 
developed a graphical representation for the constructs in our SAW model and implemented them in a GUI 
tool. Fig. 2 illustrates partial graphical representation of the constructs in our SAW model. Boxes represent 
the entities in the model. The type of an entity is quoted by “<<” and “>>”. A solid line with a solid 
arrowhead from one entity to another entity represents that the starting entity is used by or composes the 
terminating entity. A solid line with a non-solid arrowhead represents that its starting entity is used to 
define the terminating entity. A dotted line with a relation encircled by an ellipse is used to connect a 
situation and a service invocation with the relation between them. The attributes associated with entities, 
such as context types and termination conditions of situation analysis, are, however, not represented in Fig. 
2. These attributes are required for synthesizing SAW agents.   

3.2 AS3 Calculus and Logic 

Process calculi have been used as programming models for concurrent (May and Shepherd, 1984) and 
distributed systems (Caromel and Henrio, 2005). AS3 calculus (Yau, et al., 2006a; Yau, et al., 2005b) is 
based on classical process calculus (Appel, 1992). It provides a formal programming model for SBS, which 
has well-defined operational semantics involving interactions of external actions and internal computations 
for assessing the current situation and reacting to it (Milner, 1999). The external actions include 
communication among processes, logging in and out of groups/domains. The internal computations involve 
invocation of services as well as internal control flow. 

For the sake of completeness, we summarize part of the syntax of AS3 calculus in Table 1 which will be 
used in this paper. Similar to classical process calculus, a system in AS3 calculus can be the parallel 
composition of two other systems, or a recursive or non-recursive process. A recursive or non-recursive 

 
Fig. 2. Partial graphical representation of SAW 

requirements 
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process can be an inactive process, a nominal identifying a process, a process performing external actions, a 
process performing internal computations, a service exporting a set of methods, or the parallel composition 
of two other processes. The methods are defined by the preconditions describing the constraints on the 
inputs accepted by the methods and post-conditions describing the constraints on the outputs provided by 
the methods. Continuation passing (Cardelli and Gordon, 2000) is used to provide semantics of 
asynchronous service invocations. In Table 1, I:li(y)^cont denotes the invocation of the method li exported 
by I with parameter y and continuation cont. External actions involve input and output actions on named 
channels with types as in the ambient calculus (Huth and Ryan, 2004). Internal computation involves beta 
reduction, conditional evaluation for logic control, and invocation of public methods exported by a named 
service or private methods exported by the process itself. 

 
AS3 logic (Yau, et al., 2005b, 2006a) is a hybrid normal modal logic (Blackburn, et al., 2003) for 

specifying SBS (Milner, 1999). The logic has both temporal modalities for expressing situation information 
as well as modalities for expressing communication, knowledge and service invocation. It provides atomic 
formulas for expressing relations among variables and nominals for identifying agents. The AS3 logic 
supports developers to declaratively specify situation awareness requirements. Models for the logic are 
processes in the AS3 calculus. These processes provide constructive interpretations for the logic. Following 
a Curry-Howard style isomorphism (Sorensen and Urzyczyn, 2006), in which proofs are interpreted as 
processes, a novel proof system of AS3 logic can support the synthesis of AS3 calculus terms from 
declarative AS3 logic specifications.  

Here, we will only summarize the parts of syntax of AS3 logic, which will be used in this paper, and 
provide some intuitive explanations to the logic. Table 2 shows the part of the syntax of AS3 logic.  

In the above table, we assume that every variable x has a type. Intuitively, the nominals act as identifiers 
to processes. The knowledge formula intuitively states that after a process receives the item named u from 
another process, the process satisfies φ. The modality serv(x;u;σ;φ) indicates that a process invoking 
service σ with parameter x receives u as the result, and then satisfies φ. The formula <u>φ describes the 
behavior of a process after sending out u. The AS3 logic is a hybrid modal logic in the sense that nominals, 
which refer to processes, form primitive formulas (Blackburn, et al., 2003).  

The following modalities, which will be used in this paper, can be defined in terms of the primitive 
connectives and modalities defined in Table 2: 

 Eventually: diam(ϕ) := E(T U φ)  
 Universal quantification on time: ∀t ϕ := ¬∃t¬ϕ 

Table 1  
Part of the syntax of AS3 calculus 
P::=  //Processes 
    zero  (inactive process) 
    P par P (parallel composition of processes) 
    I(x1, …, xn) (process identifier with 
parameters) 
    E.P  (external action) 
    C.P  (internal computation)  
    P1 plus P2 (nondeterministic choice) 
    time t.P (timeout) 

E::=              //External actions 
    ch(x)              (input from a named channel) 

ch<x>               (output to a named channel) 
 

C::=                //Internal computations 
    let x=D instantiate P        (beta reduction)  

if exp then P else P’         (conditional evaluation) 
 
D::= I:li(y)^cont               (method invocation) 

 

Table 2   
Part of the syntax of AS3 logic 
φ1, φ2 ::=   formula 
      T                 true 
      U                 nominal 
      pred(x1,…,xn) atomic formula 
      x ~ c                 atomic  constraint 
  // ~::= > | <|  ≤| ≥ | =,  
                                   c is a natural number 
      φ1 ∨ φ2 disjunction 
      ┐φ                 negation 

E(φ1 U φ2)    until 
E(φ1 S φ2)    since 
k(u; φ)      knowledge of u 
serv(x;u;σ;φ)    invocation of service σ using  
                                  input x by φ and returning u 
∃t φ     existential quantification on time 
<u> φ                 behavior after sending message 
φ1 ∧ φ2     conjunction 
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4. OVERVIEW OF OUR APPROACH 

As mentioned before, the tasks for achieving SAW capability in a SBS include relevant context 
acquisition, distributed situation analysis and triggering proper actions in response to situation changes at 
runtime. To develop SAW capability in SBS, the following major issues need to be addressed:  

o Specify SAW requirements. SAW requirements from users are described in natural languages and 
cannot be processed algorithmically. Such descriptions are normally ambiguous. Hence, 
developers need to have effective tools to support generation of precise specification of the SAW 
requirements, which is machine processable. 

o Decompose the specifications. Specifications need to be properly decomposed to distribute the 
tasks to distributed SAW agents so that they can efficiently achieve SAW capability. 

o Synthesize SAW agents. To greatly reduce the development effort and support runtime system 
adaptation, SAW agents need to be automatically synthesized.  

In this section, we will present an overview of our approach to logic-based specification, automated 
decomposition and agent synthesis for situation-aware SBS. 

4.1 Architecture of Our Approach 

The architecture of our approach is depicted in Fig. 3. The development of SAW capability in SBS 
consists of the three steps described in the three boxes in the middle of the figure, each with a set of 
techniques identified in the dashed boxes on the left-hand side. The parallelograms and the dotted-line box 
on the right-hand side contain the outputs of these steps. 

Step 1) Specifying SAW requirements. SAW requirements are first represented graphically using our GUI 
tool, then translated to formal specifications in AS3 logic. Using the GUI tool, developers can easily 
generate AS3 logic specifications without any knowledge of the AS3 logic. We assume that the consistency 
and redundancy of the specifications have been checked by developers or some automated tools.    

Step 2) Decomposing SAW specifications. Given consistent and concise SAW specifications, situations 
need to be decomposed into multiple subsets, each of which is assigned to an SAW agent for collecting 
contexts, analyzing the situations and triggering system's reactive behavior under these situations. In this 
step, situations are grouped to subsets by a decomposition algorithm based on a set of inputs and two 
decomposition factors. The inputs are SAW requirement specifications and domain knowledge 
specifications with network topology and the communication bandwidth between each pair of hosts in the 
system (see Sec. 6). The decomposition of situations ensures that the communication cost among the SAW 
agents for analyzing these situations can be greatly reduced, and SAW agents can be easily re-synthesized 
when SAW requirements are reconfigured at runtime. 

 
Fig. 3. Architecture of our approach 
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Step 3) Synthesizing SAW agents. From the decomposed situations and related specifications, SAW 
agents are automatically synthesized with AS3 calculus terms using our agent synthesis algorithm (see Sec. 
7). The synthesized SAW agents will be compiled into executable codes using an existing compiler. The 
executable SAW agents will run on a distributed agent execution platform, e.g. the Secure Infrastructure for 
Networked Systems (SINS) (Bharadwaj, 2003), to provide SAW capability for SBS. These SAW agents 
can also work with other agents, such as security agents for flexible security policy enforcement and 
workflow agents for adaptive workflow coordination.  

In our approach, a system special service was developed to facilitate the analysis of temporal situations 
by SAW agents. The system special service has the following four methods: 

 appendHistory(SituName, SituData, Timestamp) stores situational information and removes 
outdated data. 

 chkSituP(SituName, ω, ε) checks whether the situation was true sometime within [CurrentTime-ω , 
CurrentTime-ω +ε], where CurrentTime is the present time, ω is an offset from CurrentTime, and ε  
is the length of the time period to be checked. 

 chkSituH(SituName, ω, ε) checks whether the situation was always true within [CurrentTime-ω, 
CurrentTime-ω+ε]. 

 retrieveRelatedData(SituName, ω, ε, Type) retrieves related data of the situation. 
At runtime, the contexts and situational information of temporal situations and the situations used to 

define temporal situations will be periodically retrieved from and recorded in the system special service by 
invoking aforementioned four methods.  

4.2 An Illustrative Example 

Consider a SBS, which has access to a set of services, including a rescue center, rescue ships, 
helicopters and medical ships, for various sea rescue operations. The following “sea rescue” example is 
presented to show how situational information is used for coordinating execution of a service-based system, 
and to illustrate our approach:  

1) The rescue center (rc) receives an SOS message from a ship (bs) indicating that bs has an accident 
and some passengers are seriously injured.  

2) Upon detecting such a situation, rc is responsible for locating proper services to rescue the injured 
passengers.  

3) If there are injured passengers in a ‘critial’ status, and the weather is safe for a helicopter to perform 
rescue operation, and bs is within a helicopter’s flight range, rc will notify a helicopter heli (by 
triggering dispatch_heli method) to pick up the injured passengers and take them to a nearby hospital.  

 4) Otherwise, rc will notify a nearby medical ship mShip to go to bs to provide emergency medical 
treatment for injured passengers. Also, heli will return to its base if it is on the way to bs. 

In this example, a precondition of dispatch_heli action is that wind velocity near bs has been lower than 
1000 feet per minute for 15 time units. Developers can analyze the SAW requirements using our SAW 
requirement analysis steps identified in Sec. 3.1. Due to limited space, we only illustrate the analysis of 
partial SAW requirements in this example as follows:  

i) Identify the following services used in the application: rc, bs, heli, and mShip.  
ii) In order to invoke dispatch_heli method provided by heli service, the following contexts, 

constants and context comparator should be considered:  
a. Contexts: location of bs, wind velocity near bs, and passenger injury status (collected by 

invoking get_injuryStatus method of rc service).  
b. Constants: 15, 1000, and ‘critial’  
c. Context comparator: = and <  

iii) Method dispatch_heli should be triggered by rc under a situation (called readyToDispatchHeli 
situation), which means that there are passengers in critical status (called criticalInjuryFound 
situation), and that heli is able to perform the rescue operation on bs (called canUseHeli 
situation). Situation canUseHeli is true when bs is within heli’s flight range (called withinRange 
situation) and wind velocity near bs has been lower than 1000 feet per minute (called 
lowWindVelocity situation) for over 15 time units (called lowWindVelocityForAWhile situation).  

iv) Extract atomic situations criticalInjuryFound, withinRange, and lowWindVelocity from the 
situations identified in (iii).  
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v) Construct the atomic situation criticalInjuryFound using get_injuryStatus method of rc service, 
context of injury status, constant ‘critical’ and context comparator ‘<’.  

5. SPECIFYING SAW REQUIREMENTS 

After requirement analysis, developers can construct the graphical representations of these SAW 
requirements, and generate AS3 logic specifications from the graphical representations using our GUI tool 
without any knowledge of AS3 logic (see Sec. 3.2). The generation of AS3 logic specifications for SAW 
requirements can be easily done following a mapping between our model constructs and AS3 logic 
formulas shown in Table 3.  In the following, we will discuss various specifications of SBS. Fig. 4 shows 
partial SAW specifications in the “sea rescue” example. 

  Specifying Services 
 A method m of service σ with input a and output b is denoted by method signature m(a; b; σ), and the 

invocation of service σ with input x returns u as output is denoted by the modality serv(x; u;σ), where a, b, 
x and u are typed variables. In particular, a and b are of platform-specific data types, while x and u are of 
platform-independent context type. Hence, a service specification provides a mapping between high-level 
platform-independent service implementation to low-level platform-specific service implementation. For 
example, the following specification describes a method of service rc for collecting a context of “injStat” 
type: 

get_injuryStatus([int(ALoc)]; [string(IStatus)]; rc)→ serv([loc(ALoc)]; [injuryStatus(IStatus)]; rc) 

In the above service specification, the variables ALoc and IStatus used in the modality serv are typed 
using context types loc and injuryStatus, whereas the same variables used in the method signature of 
get_injuryStatus are typed using the data types int and string. This allows developers to map the context 
types, which are platform-independent and only are used for high-level reasoning on SAW, to the actual 
data types supported by the low-level execution platform. 

 Specifying Atomic Situations 
In atomic situation specifications, each atomic situation s consists of a set of service invocations serv(x1; 

u1; σ1), …, serv(xn; un; σn) for collecting context values u1, … un and an atomic constraint arg1 opc arg2 for 
comparing arguments arg1 and arg2 using context comparator opc. Argument arg1 is always a context 
variable, whose value is one of u1, … un. Argument arg2 can either be one of u1, …, un or be a constant in 
the context value domain. The atomic constraint determines the value of situation s. Attribute f denotes that 
situation s should be analyzed every f time units. Attribute cond is the termination condition of s. It means 
that whenever cond becomes true, stop analyzing s. For example, an atomic situation criticalInjuryFound 
with the meaning of “an injured passenger is in critical status” should be analyzed every 10 time units until 
the situation rescueSuccess becomes true. AS3 logic specification for this atomic situation is below: 

Table 3 
Specifying SAW requirements in AS3 logic 
Specification Syntax 

Service invocation m(a; b; σ)→ serv(x; u; σ) 

Atomic situation serv(x1; u1; σ1), … ,serv(xn; un; σn), arg1 opc arg2   
→diam(k([u1, …, un,], s, monitor_until(f, cond))) 

Logical composite 
situation 

k([u1, …, uk,], s1) ∧ k([uk+1, …, un], s2) | k([u1, …, uk], s1) ∨ k([uk+1, …, un], s2) | 
¬k([u1, …, uk], s1) 
→diam(k([u1, …, un], s, monitor_until(f, cond))) 

Temporal situation ∀ Time currentTime-ω≤Time≤currentTime-ω+ε, s’ |  
∃ Time currentTime-ω≤Time≤currentTime-ω+ε, s’  
→diam(k([x1, …, xn], s, monitor_until(f, cond))) 

Relation among 
situations and 
service invocations 

trigger(m, s) 
precondition(m, s) 
do(m, s1, s2) 
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 serv([loc(ALoc)];[injuryStatus(IStatus)]; rc), IStatus = ‘critical’  
→ diam(k([loc(ALoc), injuryStatus(IStatus)], criticalInjuryFound, monitor_until(10,rescueSuccess))) 

 In the above specification, the modality serv(loc(ALoc);injuryStatus(IStatus);rc) corresponds to a 
service invocation get_injuryStatus, which returns the injury status of a passenger in the accident, given the 
accident location ALoc. Atomic constraint IStatus = ‘critical’ is used for comparing a context variable 
IStatus with a constant ‘critical’ using context comparator ‘=’.  

  Specifying Temporal Situations 
In AS3 logic, temporal operators P (sometimes in the past) and H (had been true over a period of time in 

the past) are defined using ∃ (existential) and ∀ (universal) quantifications over a time range. The time 
range is defined as [CurrentTime-ω , CurrentTime-ω+ε], where ω is an offset from the present time 
CurrentTime, and ε is the length of the time period to be checked. For example, a temporal situation 
lowWindForAWhile with the meaning of “wind velocity in the accident location has always been low in the 
past 15 time units” is specified as follows: 

∀Time CurrentTime-15 ≤ Time ≤ CurrentTime, k([int(Time), windVel(Vel)], lowWindVelocity) 
→ diam(k([windVel(Vel)], lowWindForAWhile, monitor_until(10, rescueSuccess))) 

A temporal situation cannot be used to define another temporal situation because the conflict or overlap 
of two time ranges can make the defined situation meaningless.  

 
SERV1) 

 

/* service specifications */ 
get_windVelocity([int(ALoc), int(Time)]; [int(Vel)]; rc) 
→ serv([loc(ALoc), int(Time)]; [windVel(Vel)]; rc) 

SERV2) withinFlightRange([int(ALoc)]; [bool(Result)]; heli)  
→ serv([loc(ALoc)]; [bool(Result)]; heli) 

SERV3) backToBase([ ]; [ ]; heli; SAW_heliAgent) → serv([ ]; [ ]; heli) 

SERV4) detect_accident([ ]; [int(ALoc)]; rc) 
→ serv([ ]; [loc(ALoc)]; rc) 

 
AS1) 

/* atomic situation specifications */ 
serv([loc(ALoc), int(Time)]; [windVel(Vel)]; rc) ∧ Vel < 1000  
→ diam(k([loc(ALoc), windVel(Vel)], lowWindVelocity, monitor_until(10, 
rescueSuccess))) 

AS2) serv([loc(ALoc)]; [bool(Result)]; heli) ∧ Result = true 
→ diam(k([], withinRange, monitor_until(50, rescueSuccess))) 

AS3) serv([]; [loc(ALoc)]), ALoc >0 
→ diam(k([loc(ALoc)], accident_detected, monitor_until(50, rescueSuccess))) 

 
TS) 

 

/* temporal situation specifications*/ 
∀Time CurrentTime-15 < Time < CurrentTime  
∧ k([loc(ALoc), windVel(Vel)], lowWindVelocity) 
→ diam(k([loc(ALoc), windVel(Vel)], lowWindForAWhile, monitor_until(10, 
rescueSuccess))) 

CS1) 
 

/* logical composite situation specifications*/ 
k([loc(ALoc), windVel(Vel)], lowWindForAWhile]) ∧ k([], withinRange))  
→ diam(k([int(ALoc), windVel(Vel)], canUseHeli, monitor_until(10, rescueSuccess))) 

CS2) k([loc(ALoc), windVel(Vel)], canUseHeli)  
∧ k([loc(ALoc), injuryStatus(IStatus)], criticalInjuryFound)  
→ diam(k([loc(ALoc), windVel(Vel), injuryStatus(IStatus)], readyToDispatchHeli, 
monitor_until(10, rescueSuccess))) 

RB1) /* reactive behavior specifications */ 
trigger(k([int(ALoc), windVel(Vel)], not(canUseHeli)), serv([ ];[ ]; heli) 

Fig. 4. Partial SAW specifications in the example 
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 Specifying Logical Composite Situations 
In logical composite situation specifications, each logical composite situation s is composed by atomic 

situations, temporal situations and/or other logical composite situations using logical operators ∧, ∨, and/or 
¬. For example, a logical composite situation canUseHeli with the meaning of “a helicopter can be used 
only when the accident location is within its reachable range and there has been low wind velocity in the 
accident location for a while” should be analyzed every 10 time units until the situation rescueSuccess 
becomes true. AS3 logic specification for this situation is given below: 

k([windVel(Vel)], lowWindForAWhile) ∧ k([], withinRange) 
→ diam(k([loc(ALoc), windVel(Vel)], canUseHeli, monitor_until(10, rescueSuccess))) 

  Specifying Relations Among Situations and Service Invocations 
 The “trigger” relation in our SAW model represents the reactive behavior of the system. Specification 

of a trigger relation in AS3 logic is a simple formula in the format trigger(m, s), where method m is 
triggered when situation s is true. Similarly, “precondition” relation is represented as precondition(m, s), 
where situation s is the precondition of method m. “do” relation is represented as “do(m, s1, s2)”, which 
means that invoking m under situation s1 will cause situation s2 becomes true.  

6. AUTOMATED DECOMPOSITION OF SAW SPECIFICATIONS 

The analysis of a situation can be done by a single SAW agent or multiple SAW agents distributed on 
multiple hosts collaboratively. A host h is considered the sink point of a situation s if the final value of s is 
calculated on h. Due to various system size and network bandwidth among hosts, different selections of 
sink points for situations in SBS will have different impacts on the performance of situation analysis. 
Furthermore, reconfiguration of SAW requirements in runtime will require re-synthesis of affected SAW 
agents. In particular, changes in the specification of a situation s are most likely affect the situations used to 
define s or the situations defined using s. Hence, to reduce the effort of re-synthesizing SAW agents, it is 
desirable to let an SAW agent process as many related situations as possible. Hence, the purpose of our 
automated decomposition of SAW specifications is to determine the appropriate sink point for each 
situation and group the related situations together for SAW agents to perform situation analysis efficiently.  

6.1 Domain Knowledge and Decision Factors for Automated Decomposition of 
Situations 

Decomposition requires domain knowledge of network topology and communication bandwidth 
between each pair of hosts in the system. The network topology specification describes which service is on 
which host. In AS3 logic, network topology and communication bandwidth are specified as follows: 

 serviceHost(s, h): Service s is deployed on host h. 
 bw(h1, h2, b): The bandwidth between host h1 and host h2 is b. When h1 = h2, b = ∞.  

Generally, domain knowledge specification is provided by domain experts. Based on the SAW 
requirement specifications and domain knowledge specification, the decomposition of our approach 
depends on the following two factors:  

Factor 1) Communication cost 
The communication cost for analyzing situation s when host hk is selected as the sink point is denoted as 

cost(s, hk), which is given by 
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where H denotes a set of unique hosts related to situation s by providing either the contexts or situational 
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information for analyzing s, or the service invocations which should be triggered under s for reactive 
behaviors of the system; TS denotes a set of temporal situations for the system; hsys is the host, where the 
system special service locates; s TS denotes that s is used to define a temporal situation; and s TS 
denotes that s is not used to define any temporal situation. cost(s, hk) is calculated in the following four 
cases: 

1) H contains only one element, which is hk. In this case, situation s will be assigned to hk with no 
choice. Hence, cost(s, hk) = 0.  

2) s∉TS and s TS.  In this case, situation s is not a temporal situation and not used to define any 
temporal situation. If s is an atomic situation, then nx is the number of interactions between hk and hi 
for collecting context values for s from hi. If s is a logical composite situation, then nx is the number 
of interactions between hk and hi for collecting situational information for s from hi. Regardless of 
the type of s, ny is the number of interactions between hk and hi for triggering service invocations, 
which are provided by services on hi. 

3) s∉TS and s TS. In this case, situation s is not a temporal situation, but is used to define a temporal 
situation. The communication cost for analyzing s is calculated in the same way as 2). In addition, 
the communication cost for recording the information of s in the system special service is 

1
( , )k sysfr bw h h×

, where fr denotes the frequency of analyzing s, and hsys is the host where the 

system special service locates. 

4) s∈TS. In this case, situation s is a temporal situation. The communication cost has two parts: a) 
1

( , )k sysbw h h
, the communication cost for retrieving situational information from the system special 

service, b) 
1,

1
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y
i i k k i

n
bw h h= ≠

×∑ , the communication cost for triggering service invocations for s,. 

It is obvious that the final selection of sink point for situation s should be the host that requires the 
minimum communication cost, compared to all other related hosts.  

Factor 2) Situation composition tree 
A situation composition tree is a tree that reflects the composition relation of a set of situations used in 

defining another situation. Leaf nodes correspond to atomic situations. The edge between a parent node and 
its child node represents the definition or composition relation. For a logical composite situation csi, its 
child nodes are the situations used to compose csi. For a temporal situation tsi, its child node is the situation 
used to define tsi. Every situation belongs to a situation composition tree. If the situation is the root of the 
tree, it means that the situation is not used to define any other situation. Otherwise, the situation is used to 
define other situations. Situations on the same tree are more likely to be affected by the SAW requirement 
reconfiguration in runtime. Hence, situations on the same tree should be grouped together as much as 
possible, in order to minimize the effort of re-synthesizing SAW agents. 

6.2 Decomposition algorithm 

The decomposition of specified situations is conducted in the following two steps: 1) determine the sink 
point for each situation, and 2) decompose the situations with the same sink point to subsets based on their 
situation composition trees. Situation composition trees can be easily constructed based on situation 
definitions. Our decomposition algorithm is shown as follows: 

Decomposition algorithm: 

Require: a list of situations sList, a list of hosts hList, a list of situation composition trees treeList, SAW 
specifications and network topology specifications, the system special service is provided by hostsys 

1: Initialize a list L = {} 
2: for each situation si in sList do 
3: Initialize a list hostListi = {} for si 
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4: if si is an atomic situation defined by a set of service invocations Ω then 
5: for each service invocation νi in Ωi do 
6: Get hp of a service σi, such that serviceHost(σi, hp) and σi provides νi, put hp into hostListi, 

and record the number nump of hp in hostListi 
7: Get hp’ of a service x, which provides external context values for νi , and x ∉Ωi, put hp’ 

into hostListi and record the number nump of hp’ in hostListi 
8: end for 
9: else if si is a logical composite situation defined by a set of situation S then  
10: for each situation sx in S do 
11: Get host(s’, hp) from L for s’ and put hp into hostListi 
12: end for 
13: else if si is a temporal situation defined by a situation s’ then 
14: Get host(s’, hp) from L for s’ and put hp into hostListi 
15: end if 
16: Find all trigger(si, a) and host(a, hk), and insert hk into hostListi, and record the number numk of 

hk in hostListi 
17: for each unique hp in hostListi do 
18: Calculate the cost for analyzing si and triggering service invocations under si,  
19: if si is not a temporal situation and is used to define a temporal situation then 
20: Calculate the cost for recording si in the system special service on hostsys 
21: else if si is a temporal situation 
22: Calculate the  cost for retrieving value of s’ from the system special service on hostsys 
23: end if 
24 Calculate the total cost cost(si, hi) for si if the saw agent for si is deployed on hp 
25: end for 
26: Get sink point hi for si, such that cost(si, hi) = min(cost(si, ht)), ht ∈ HostListi. If there are 

multiple hosts can ensure the minimum cost, choose the one that has fewer situations assigned 
27: Insert a formula sinkPoint(si, hi) into L 
28: end for 
29: for each unique host hk in L do 
30: Initialize a set of empty lists AgentListk, each empty list agentki in AgentListk corresponding to a 

situation composition tree treei in treeList 
31: end for 
32: for each situation s in L, where sinkPoint(s, hk) do 
33: if s ∈ tree1 ∩ … ∩ treen then 
34: Find agentki, where 1≤ i ≤ n, agentki ∈ AgentListk, and agentki contains the minimum 

situations  
35: Insert s into agentki 
36: end if 
37: end for 

 
In this algorithm, determining the sink points for situations is done in Lines 1-28 and decomposing 

situations with the same sink point is done in Lines 29-37. 
Now, let us use the “sea rescue” example to illustrate this algorithm. Suppose service rc is provided by 

host hostrc, and service heli is provided by host hostheli. The bandwidth between hostrc and hostheli, 
bw(hostrc, hostheli) is assumed to be 30 megabits per second.  

First, we initialize an empty list L (Line 1 of Decomposition algorithm). For atomic situation 
lowWindVelocity, initialize an empty host list hostListlwv (Line 3 of Decomposition algorithm). From the 
specifications in Fig. 4, we know that situation lowWindVelocity is determined by comparing context value 
of Vel and a constant 1000. Value of Vel is returned by method get_windVelocity of service rc on host 
hostrc. Hence, we insert hostrc into hostListlwv, and initialize the count of hostrc in hostListlwv to be 1 (Line 
6). Because ALoc is an external variable used by method get_windVelocity, and ALoc is provided by 
service rc on hostrc, we increase the count of hostrc in hostListlwv to 2 (Line 7). No service invocation should 
be triggered under situation lowWindVelocity. The sink point of situation lowWindVelocity is hostrc because 
hostListlwv only contains hostListrc. We insert sinkPoint(lowWindVelocity, hostrc) in L (Lines 18-27). 
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Similarly, the sink point for atomic situation accidentDetected is hostrc, the sink point for situation 
withinRange is hostheli. For temporal situation lowWindForAWhile, initialize an empty list hostListfaw. We 
get sinkPoint(lowWindVelocity, hostrc) from L and insert hostrc into hostListfaw (Line 14). Because no 
service invocation should be triggered under lowWindForAWhile, hostListfaw only contains hostrc. Hence, 
the sink point of situation lowWindForAWhile is also hostrc. We insert sinkPoint(lowWindForAWhile, 
hostrc) in L. In Fig. 4, logical composite situation canUseHeli is composed of withinRange and 
lowWindForAWhile. No service invocation should be trigger under canUseHeli. Hence, we can have that 
the host list for canUseHeli contains hostrc with count of 1, and hostheli with count of 1 too. The 
communication cost for choosing hostr as the sink point for situation canUseHlei and the communication 
cost for choosing hostheli  as the sink point for situation canUseHlei are calculated as follows: 

cost(canUseHeli, hostrc) = 1*1/bw(hostrc, hostheli) =1/30 ≈ 0.033  
cost(canUseHeli, hostheli) = 1*1/bw(hostrc, hostheli)= 1/30 ≈ 0.033 
Because hostrc has more situations than hostheli, the sink host for situation canUseHeli is hostheli (Line 

26). We insert sinkPoint(canUseHeli, hostheli) in L. Choosing sink points for other situations can be done in 
the same way. Then, we decompose situations with the same sink point based on their situation 
composition trees. In this example, three situations accidentDetected (AS3 in Fig. 4), lowWindVelocity 
(AS1 in Fig. 4) and lowWindForAWhile (CS1 in Fig. 4) have the same sink point hostrc. Based on their 
definitions, the two situations lowWindVelocity and lowWindForAWhile belong to the same situation 
composition tree, and hence the two situations are grouped together. Therefore, accidentDected is analyzed 
by an SAW agent, and the two situations lowWindVelocity and lowWindForAWhile are analyzed by another 
SAW agent. 

6.3 Complexity analysis of the decomposition algorithm 

To analyze the complexity of our decomposition algorithm, we first give the following two definitions: 

The length of an atomic situation (LAS) is the number of service invocations used to collect contexts for 
analyzing the atomic situation. The length of a logical composite situation (LLCS) is the number of 
situations used to compose the logical composite situation in the logical composite situation's definition. 

Theorem 1 (complexity of the decomposition algorithm): Given p situations, and q services, w hosts, the 
complexity of situation decomposition is O(p*q+w*k), where k is the number of situation composition trees 
in the system.  

Proof: Assume that there are x atomic situations, y logical composite situations, z temporal situations, the    
maximum LAS is las, the maximum LLCS is llcs, and under a situation at most r service invocations can be 
triggered. To find the sink point for each atomic situation, at most q*(las+r)2 steps are needed. To find the 
sink point for each logical composite situation, at most q*(llcs+r)2 steps are needed. To find the sink point 
for each temporal situation, at most q*r2 steps are needed. Decomposing situations on w sink points based 
on k situation composition trees, it takes at most w*k steps. Because las, llcs and r are usually small numbers, 
the total complexity is O(x*q*(las+r)2+y*q*(llcs+r)2+z*q*r2+w*k)= O((x+y+z)*q+w*k) = O(p*q+w*k). 

7. AUTOMATED SYNTHESIS OF SAW AGENTS 

7.1 Representing SAW agents using AS3 calculus 

Instead of directly synthesizing SAW agents in platform-dependent programming languages, such as 
C++, Java and C#, our automated agent synthesis approach first synthesizes the AS3 calculus terms, which 
define SAW agents. The main advantage of using AS3 calculus is to provide us platform-independent 
models of the agents, which capture the essential processes of context acquisition, situation analysis and 
reactive behavior triggering. These models can later be used to verify the synthesized agents by a model 
checker. Platform-specific compilers can be developed to compile AS3 calculus terms to executable code 
on different platforms. We have developed a compiler to compile AS3 calculus terms to agents in Java on 
SINS platform (Bharadwaj, 2003). Here, we will focus on the synthesis algorithms of SAW agents in AS3 
calculus terms. 

 Before presenting our SAW agent synthesis algorithms, we first need to examine how SAW agents are 
defined using AS3 calculus. Fig. 5 depicts the specifications of the SAW agent, saw_heliAgent, in our “sea 
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rescue” example. The saw_heliAgent monitors three situations withinRange (AS2 in Fig. 4), canUseHeli 
(CS1 in Fig. 4), and readyToDispatchHeli (CS2 in Fig. 4). The main process of saw_heliAgent is defined 
by L16-L18 in Fig. 5. L17 instantiates three sub-processes, withinRange_Agent, canUseHeli_Agent and 
readyToDispatchHeli_agent, in parallel to analyze AS2, CS1 and CS2, respectively. An input action for 
collecting the information of accidentDetected situation is performed in L17 before instantiating 
winthinRange_Agent. L18 recursively executes the saw_heliAgent. 

 
The sub-process canUseHeli_Agent is defined by L8-L14. It first collects information on situations 

lowWindForAWhile (S1) and withinRange (S2) in L9. Then, the result of analyzing situation canUseHeli is 
generated based on the truth value of S1 and S2 (L10-L12). In addition, method backToBase is triggered in 
L12. 

 This example illustrates the following important aspects of defining SAW agents using AS3 calculus:  
(a) The input and output actions in AS3 calculus are used to represent communications among SAW 

agents. When an SAW agent determines the value of a situation s, it sends all the related contexts 
and the value of s through a communication channel also named s. All other agents interested in s 
will receive the information from channel s. Hence, SAW agents can be easily reused since new 
applications can obtain situational information based on the names of situations.  

(b) The parallel composition and non-deterministic choice (see Table 1) in AS3 calculus are used when 
multiple input actions need to be performed by an SAW agent without predefined execution orders. 
Which operator should be used is determined by our agent synthesis algorithms.  

 (c) The method invocation and atomic constraint evaluation in AS3 calculus are used to represent 
operations on contexts.  

 (d) The timeout and recursive processes in AS3 calculus are used to represent periodical context 
acquisition and situation analysis. 

7.2  The SAW agent synthesis algorithms 

Given a set of SAW specifications, our SAW agent synthesis process will do the following:  
1) For each specified situation s, if s is an atomic situation, synthesize a sub-process for s using SynAtom 

algorithm. If s is a logical composite situation, synthesize a sub-process for s using SynComp algorithm. If 
s is a temporal situation, synthesize a sub-process for s using SynTemporal algorithm.  

2) For each SAW agent, synthesize its main process to initialize the sub-processes for all the situations 
processed by the SAW agent using SynMain algorithm.  

L1 
L2 
L3 
L4 
L5 
L6 
L7 
 
L8 
L9 
L10 
L11 
L12 
L13 
L14 
 
L15 
 
 
L16 
L17 
 
L18 
 

fix withinRange_Agent(integer ALoc) = 
    let bool Result = heli:withinRange(integer ALoc) instantiate 
        if Result = true  
            then ch withinRange<true> 
            else ch withinRange<false>. 

( time 50. withinRange_Agent(integer ALoc) 
  plus ch rescueSuccess(string Status) . zero) 

|| 
fix canUseHeli_Agent =  

ch lowWindForAWhile(bool S1) par ch withinRange(bool S2). 
if S0=true && S1 = true && S2 = true 

        then ch canUseHeli<integer ALoc, integer Vel, true> 
        else {ch canUseHeli<integer ALoc, integer Vel, false> . heli:backToBase()}. 

 { time 10.canUseHeli_Agent(integer ALoc, bool S0) 
  plus ch rescueSuccess(string Status) . zero } 

|| 
fix readyToDispatchHeli_Agent = 
    ... … 
|| 
fix saw_heliAgent =  

{ch accidentDetected(integer ALoc, bool S0) . withinRange_Agent(integer ALoc) } par 
canUseHeli_Agent  par readyToDispatchHeli.  

saw_heliAgent 
 

Fig. 5. An example SAW agent in AS3 calculus 
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These algorithms are given below: 

SynAtom algorithm: 
Require specification of an atomic situation aSi in the format of  
Defi → k([x0, … , xn] aSi, monitor_until(fi, condi)) 
1: Initialize an empty list aLi to store the operations for analyzing aSi, and two empty lists reqLi and acqLi

to store the required and acquired variables of aSi. 
2: for each atomic formula Tj in Defi do 
3: if Tj is serv(Ij;Oj;Sj) then 
4: Find the method signature Mj from the specification of service Sj by matching Ij and Oj, and add 

Mj to aLi. Append Ij and Oj to reqLi and acqLi respectively. 
5: else if Tj is K(Oj;SMj), where SMj is a service name concatenated with a method name then  
6: Add a an input action to aLi, and append Oj to acqLi 
7: else if Tj is an atomic constraint then  
8: Generate an If-then-else statement, in which the condition is a constraint evaluation for Tj, an

output action ch aSi(x0, … , xn, true) is in the then branch, an output action ch aSi(x0, … , xn, 
false) in the “else” branch  

9: Iterate reactive behavior specifications to find actions to be triggered in aSi or ¬aSi, and add the 
method invocations to the “then” or “else” branch, and append it to aLi 

10: end if 
11: end for 
12: Get input perimeters for instantiating this sub-process by removing all variables in acqLi from reqLi  
13: Append ( time fi .aSi_agent(reqi) for recursion to aLi 
14: if aLi is used to define a temporal situation then 
15: Get system’s current time Now and append .appendHistory(aSi, SituData, Now) to aLi, where 

SituData contains x0, … , xn and aSi’s value 
16: end if 
17: Append plus ch condi(bool Status) . zero) to the end of aLi 

SynComp algorithm: 
Require specification of an logical composite situation cSi in the format of: 
Defi → k([x0, … , xn], cSi, monitor_until(fi, condi)) 
1: for each formula k([c0, …, cj], Sj) in Defi do 
2: Generate an input action ch Sj (x0, … , xn, Sj_result) to get the information of Sj 
3: if Sj is the name of a situation then  
4: Generate a condition expression in the format of (Sj_result = true) 
5: else if Sj is in the form not(Sj’), where Sj’ is the name of a situation then  
6: Generate a condition expression in the format of (Sj_result = false) 
7: end if 
8: end for 
9: if a conjunction (∧) in Defi is used then 
10: The corresponding input actions are concatenated using “par”, and the condition expressions are 

concatenated using “and” 
11: else if a disjunction (∨) in Defi is used then  

12: The corresponding input actions are concatenated using “plus”, and the condition expressions are 
concatenated using “or” 

13: end if 

14: Generate if-then-else statements with the generated conditional evaluations, and placed them after all 
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the input actions as line 8 in SynAtom  
15: Output actions for sending the situation analysis result and actions to be triggered are added on proper 

branches as line 9 in SynAtom 
16: Generate statement for recursion and termination as lines 13-17 in SynAtom 

SynTemporal algorithm: 
Require specification of a temporal situation tSi in the format of  

∀ T (or ∃ T), CurrentTime - ϖ < T < CurrentTime - ϖ + ε,  k([c0, …, cj], Sj) 
→ k([x0, … , xn], tSi, monitor_until(fi, condi)) 

1: Generate statement for invoking service chkSituP(Sj, ω, ε) or chkSituH(Sj, ω, ε) 
2: Generate statement for invoking service retrieveRelatedData(Sj, ω, ε) 
3: Generate if-then-else statements with the generated conditional evaluations, and placed them after all 

the input actions as line 8 in SynAtom 
4: Output actions for sending the situation analysis result and actions to be triggered are added on proper 

branches as line 9 in SynAtom 
5: Generate statement ( time fi .tSi_agent(reqi) plus ch condi(bool Status) . zero) 

SynMain algorithm: 
Require a list of situations L for agent agenti 

1: for each situation s in L 

2: if s needs input perimeters p1, …, pn for instantiating its corresponding sub-process then 
3: Find a set of situations S = {sk, …, sj} from situation specifications, such that they provide 

{p1, …, pn} as outputs  
4: for each s’ in S 
5: Generate an output action ch s’(contextType pi, … , contextType pm, bool S’)  
6: end for 
7: Concatenate output actions using “par”    
8: Generate a statement of . s_agent(contextType p1, … , contextType pn) 
9: else  
10: Generate s_agent 
11: end if 
12: end for 
13: Concatenate statements using par 
14: Generate a statement of . agenti for recursion 

We will again use the “sea rescue” example to illustrate the above process. Based on decomposition 
results, saw_heliAgent monitors three situations withinRange (AS2 in Fig. 4), canUseHeli (CS1 in Fig. 4), 
and readyToDispatchHeli (CS2 in Fig. 4). Hence, sub-process withinRange_Agent for analyzing situation 
winthinRange is synthesized using SynAtom. 

Initially, the list aL2 for storing the operations for analyzing (AS2) is empty. Since the first atomic 
formula serv([loc(Aloc)]; [bool(Result)]; heli) in (AS2) matches the case in Line 4 of SynAtom, the 
corresponding method signature shown in (SERV2) is found and appended to aL2. The list reqL2 for storing 
the required contexts for analyzing (AS2) and the list acqL2 for storing the contexts collected by 
saw_heliAgent are also updated. Now, we have reqL2 = [loc(Aloc)], acqL2 = [bool(Result)], aL2 = 
[withinFlightRange([int(ALoc)]; [bool(Result)]; heli)]. 

Since the second atomic formula Result = true in (AS2) matches the case in Line 7 of SynAtom, an if-
then-else statement is generated following Lines 8-9. Now, aL2 = [withinRange(int(ALoc); bool (Result); 
heli), if Result=true then ch withinRange<true> else ch withinRange<false>].  
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Since there is no more atomic formula in (AS2), the loop from Line 2 to Line 10 ends. Since reqL2 
contains variable ALoc, which is not in acqL2, an input parameter is declared for withinRange_Agent (L1 in 
Fig. 5). 

Next, AS3 calculus terms for the operations currently in aL2 need to be generated and properly ordered. 
The calculus term for withinRange([int(ALoc)]; [bool(Result)]; heli) is the following beta reduction in AS3 
calculus:  

let bool Result=heli:withinFlightRange(integer ALoc) instantiate  P , 
where P denotes a process of subsequent operations.  

In this example, the subsequent operation is the if-then-else statement in aL2 since variable Result used 
in the if-then-else statement is the output from method withinFlightRange. Hence, P is replaced by the if-
then-else statement, and L2-L5 in Fig. 5 are generated. Finally, since monitor_until(50, rescueSuccess) is 
specified in (AS2), L6-L7 in Fig. 5 are generated following Lines 13-17 of SynAtom.  

For logical composite situation “canUseHeli” (CS1 in Fig. 4), a sub-process is generated using 
SynComp algorithm. By scanning CS1, the following formulas are found:  

• k([], withinRange) 
• k([loc(ALoc), windVel(Vel)], lowWindForAWhile) 

Hence, the corresponding input actions and condition expressions, which are generated following Lines 
3-4 of SynComp, are given below:  

Input Actions Condition Expression 
ch lowWindForAWhile(bool S1) S1 = true 
ch withinRange(bool S2) S2 = true 

 
As shown in L9-L12 in Fig. 5, following Lines 1-13 of SynComp, the input actions are concatenated 

using par, and the subsequent condition evaluation is generated. Finally, L13-L14 in Fig. 5 are generated 
since monitor_until(10, rescueSuccess) is specified in (CS1). Similarly, readyToDispatchHeli_agent can be 
synthesized. 

After the generation of withinRange_Agent for (AS2), canUseHeli_Agent for (CS1) and 
readyToDispatchHeli_agent for (CS2), the main process of saw_heliAgent is synthesized using SynMain.  

In SynMain, if a situation monitored by an SAW agent depends on the context data collected by other 
SAW agents, proper input actions will be generated by SynMain, and the data retrieved by input actions 
will be used to instantiate the sub-process for monitoring the situation. The input actions and subsequent 
instantiation statement of sub-processes are concatenated using par.  

For (AS2), its required input list reqL2 contains variable ALoc. By searching the situation specifications, 
situation accidentDetected provides the value of ALoc. Hence, an input action in L17 in Fig. 5 is 
synthesized to collect ALoc. Then, the sub-process for analyzing situation withinRange (AS2) is 
instantiated with an input parameter (ALoc) in Fig. 5. Similarly, we can also generate the instantiation 
statement for the sub-process that monitors situation canUseHeli (CS1) and the sub-process that monitors 
situation readyToDispatchHeli. Finally, the instantiation statements for the sub-processes are composed 
using par in L17 in Fig. 5. A recursion statement is added at the end of saw_heliAgent. 

7.3 Complexity analysis of the SAW agent synthesis algorithms 

Theorem 2 (complexity of agent synthesis): Given p situations, and q services, the complexity of agent 
synthesis is O((p+2q)*p)..  

Proof: Assume that there are x atomic situations, y logical composite situations, z temporal situations, the 
maximum LAS is las, the maximum LLCS is llcs, the maximum number of trigger relations for a situation is 
g, and the maximum number of input parameters for a situation is e. For synthesizing sub-processes for x 
atomic situations, it takes O(x*(las+g)*q) steps. For synthesizing sub-processes for y composite situations, 
it takes O(y*(llcs+g*q)) steps. For synthesizing sub-processes for z temporal situations, it takes O(z*g*q) 
steps. To synthesize the main processes, it takes p*(e*p+g*q) steps. Since las, llcs, g, e are usually small 
numbers, the total complexity is O(x*(las+g)*q)+y*(llcs+g*q)+ z*g*q + p*(e*p+g*q) = O((p+2q)*p). 
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8. EVALUATIONS 

8.1 Evaluating our GUI tool 

Experiments have been conducted to evaluate our overall approach. Evaluating the usability of our GUI 
tool is based on case studies. We asked a novice user and an expert user to use our SAW tool. They are 
required to model the SAW requirements of a situation-aware application. The average time spent for 
modeling different types of SAW requirements by the two users is shown in Table 4. 

 

The time needed for modeling an atomic situation increases as LAS increases. The time needed for 
modeling a logical composite situation increases as LLCS increases. However, LAS is usually smaller than 
20 because defining an atomic situation generally does not involve many service invocations. Developers 
can often keep LLCS small by reusing situations previously defined in the specifications of new situations.  

8.2 Evaluating our decomposition and SAW agent synthesis algorithms 

 Our decomposition and SAW agent synthesis algorithms were implemented using Prolog. A test 
generation tool was developed using Java to randomly generate specifications of services, situations and 
relations in AS3 logic. Programs were run on a desktop with Pentium D CPU 3.00 GHz and 2 G RAM.  

Fig. 6 shows the time comparison of decomposing and synthesizing SAW agents for 5 to 1000 situations 
(LAS = [1, 3], LLCS = [2, 4]) with different percentages of logical compositions. The solid line shows that 
it takes about 2.5 and 22 seconds to decompose and synthesize 100 and 1,000 situations with atomic and 
temporal situations only, respectively. The dotted line shows that it takes less than 1 second and 10 minutes 

Table 4 
Average time for modeling different types of SAW requirements 

Service Atomic situation Logical Composite 
Situation 

Temporal 
Situation 

Relation 

1 min/service 2 min/situation 1 min/situation 0.7 
min/situation 

0.5 min/relation 

          
Fig. 6. Decomposition and agent synthesis time comparison 
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to decompose and synthesize 100 and 1000 situations, respectively, with 1/3 logical composite situations, 
and 2/3 atomic situations and temporal situations. It is noted that less time is needed to decompose and 
synthesize SAW agents for situations with logical composite situations than that without logical composite 
situations because the number of situation composition trees is smaller for situations with logical 
composition situations.  

 
Fig. 7 shows the decomposition and agent synthesis time for 80 situations containing 1/3 logical 

composite situations with LLCS = 3 and 2/3 atomic situations with LAS = [1, 15] and temporal situations. It 
takes about 2.5 seconds to decompose and synthesize 80 situations with 1/3 situations being logical 
composite situations and LAS = 15. Fig. 8 shows the decomposition and agent synthesis time for 80 
situations containing 1/3 logical composite situations with LLCS = [2, 15] and 2/3 atomic situations with 

 
Fig. 8. Decomposition and agent synthesis time for 80 situations with different LLCS 

               
Fig. 7. Decomposition and agent synthesis time for 80 situations with different LAS 
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LAS = 2 and temporal situations. It takes about 1.5 seconds to decompose and synthesize 80 situations with 
1/3 situations being logical composite situations and LLCS = 15. 

The above evaluation results show that our decomposition and agent synthesis algorithms are quite 
efficient. This is especially important for runtime system adaptation. When a host or some SAW agents on 
the host are not available or the user’s QoS requirements are changed, SAW agents can be re-synthesized in 
a timely manner using our approach to replace the original ones. 

9. CONCLUSIONS AND FUTURE WORK 

 In this paper, we have presented a logic-based approach for specification, decomposition, and agent 
synthesis for situation-aware SBS. Our approach is based on our SAW model and AS3 calculus and logic. 
SAW requirements can be analyzed and represented graphically using our SAW model and GUI tool.  The 
graphical representation of SAW requirements can be automatically translated to declarative AS3 logic 
specifications. An algorithm for decomposing SAW specifications has been developed based on network 
topology, communication bandwidths among various hosts, and composition relations among situations. 
Algorithms for automated SAW agent synthesis were also presented. Our experimental results show that 
our GUI tool has good usability, and the decomposition and agent synthesis algorithms are efficient. 
However, so far, the SAW agents are only capable of analyzing truth-value based situations. Future work 
includes extensions for handling fuzzy situations, semantic-based context discovery, and privacy protection 
in SAW. 
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