
  
 

 
 

Situation-Awareness for Adaptive Coordination 
in Service-based Systems 

 
 

S. S. Yau, D. Huang, H. Gong, and H. Davulcu 
Arizona State University, 

 Tempe, AZ 85287-8809, USA 
{yau, dazhi.huang, haishan.gong, hasan.davulcu}@asu.edu 

 
 

Abstract 
Service-based systems have many applications, 

including collaborative research and development, e-
business, health care, environmental control, military 
applications, and homeland security. Service coordination 
is required for these systems to coordinate distributed 
activities. To achieve adaptive service coordination under 
changing environment and workload, situation-awareness 
is needed. In this paper, a model is presented for situation-
awareness (SAW) requirements in service-based systems. 
Based on this model, SAW agents are developed to 
incorporate situation-awareness and adaptive 
coordination in service-based systems.  
 
Keywords: Situation-awareness requirements, service-
oriented architecture, adaptive service coordination, 
situation-awareness agents, service-based systems. 

1. Introduction 

Service-based systems have the major advantage of 
enabling rapid composition of distributed applications, 
regardless of the programming languages and platforms 
used in developing and running the applications. Service-
Oriented Architecture [1] has been adopted in many 
distributed systems, such as Grid and Global Information 
Grid (GIG) [2], in various application domains, including 
collaborative research and development, e-business, health 
care, environmental control, military applications and 
homeland security. In these systems, various capabilities 
are provided by different organizations as services and 
interconnected by various types of networks. We consider 
a service as a software/hardware entity with well-defined 
interfaces to provide certain capability over wired or 
wireless networks using standard protocols, such as HTTP 
and SOAP (Simple Object Access Protocol). The services 
can be integrated following specific workflows, which are 
series of cooperating and coordinated activities designed to 
achieve users’ goals. Service coordination is required to 
ensure the correctness of workflow execution. Service 
coordination is a process of locating participant services, 

monitoring their status, invoking proper services, and 
propagating necessary information among them to ensure 
the correct results obtained from the coordinated 
participant services. In service-based systems, service 
coordination needs to be adaptive because (1) services 
may be unavailable or cannot provide desirable QoS due to 
distributed denial-of-service attacks, system failures or 
system overload, (2) workflows may need to be adapted 
when the situation changes in order to satisfy the 
requirements, and (3) new workflows may be generated in 
runtime to fulfill users’ new requirements. 

 To achieve adaptive service coordination, situation-
awareness (SAW), which is the capability of being aware 
of situations and adapting the system’s behavior 
accordingly [3, 4], is needed for checking whether a 
service can be invoked and adapting new workflows. A 
situation is a set of contexts in the application over a 
period of time that affects future system behavior [3, 4].  A 
context is any instantaneous, detectable, and relevant 
property of the environment, the system, or users, such as 
location, available bandwidth and a user’s schedule.  

In this paper, we will present a model for SAW in 
service-based systems. Based on this model, we will 
develop SAW agents to incorporate SAW and adaptive 
coordination in service-based systems.  

2. Current State of the Art 

Situation-awareness has been studied in artificial 
intelligence [5], human-computer interactions [6] and data 
fusion community [7]. Situation Calculus and its 
extensions [8-11] were developed for describing and 
reasoning how actions and other events affecting the 
world. A situation is considered as a complete state of the 
world and cannot be fully described, which leads to the 
well-known frame problem and ramification problem [9]. 
A core SAW ontology [12, 13] refers a situation as a 
collection of situation objects, including objects, relations 
and other situations. However, it does not address how to 
verify the specification and perform situation analysis.   



  
 

Substantial work has been done on service coordination 
[14-18]. Industrial standards, such as WS-Coordination 
[14] and WS-CF [15], aim at providing standard and 
extensible coordination frameworks to support coordinated 
workflows on web services, but do not provide techniques 
for achieving adaptive service coordination. To coordinate 
distributed systems, a formal specification framework [16] 
was developed for modeling dynamically changing 
contexts and rules in reactive systems. MARS [17] 
promotes context dependent coordination by incorporating 
programmable coordination media in distributed systems. 
EgoSpaces [18] introduced a coordination model and a 
middleware for specifying and managing agent-centered 
contexts to facilitate easy application development in 
mobile ad hoc environments. These approaches only use 
current contexts in service coordination and do not 
consider variations of contexts over a period of time, 
which are important information for service coordination. 

3. Our Approach 

In this section, we will present our approach to 
incorporating SAW for adaptive coordination in service-
based systems.  It consists of two major parts:  
(1) Modeling and specifying SAW for adaptive service 

coordination.  
(2) Developing SAW agents for adaptive service 

coordination.  
It is assumed that there is a mission planner (MP) [20, 

21] or its equivalent in a service-based system, which 
accepts goals specified by users and generates execution 
plans based on available services and current situation. 
The generated execution plan is a series of service 
compositions to be executed in order to fulfill the overall 
goal. A step (service invocation) in the execution plan may 
have certain dependencies on situations, i.e., a step can be 
executed only when a certain situation is detected. The 
execution plan can be decomposed [19] and delivered to 
SAW agents for execution. Figure 1 depicts the 

interactions among services, SAW agents, and the MP. 
An MP must be able to perform planning based on 

partial domain information, i.e. the MP does not know all 
the information related to the execution environment and 
services at the time of planning. This requirement for MP 
is needed because there is usually no central control on 
adding/removing services in service-based systems and 
services may be unavailable without notifying users. This 
requirement makes traditional planners, such as TAL 
planner [20] unsuitable. Instead, planners with CTR-S [21] 
or other adaptive workflow synthesis techniques [22] 
should be used. However, a consequence of planning with 
partial domain information is that although the generated 
workflows are always sound at the time of planning, these 
workflows might be non-executable during their execution 
due to dependency violations in a service invocation 
caused by situation changes by uncontrollable external 
agents.  Due to this difficulty, we develop SAW agents to 
coordinate the services in the execution plan. In the 
following subsections, we will present our model for SAW 
and the design of SAW agents.  

3.1. Modeling and Specifying SAW for Adaptive 
Service Coordination 

We consider a service as a process, which can accept 
inputs from other processes and produce outputs. Hence, a 
service-based system can be considered as a collection of 
parallel processes, each of which can send/retrieve data 
to/from other processes. Consequently, the service 
coordination in such a system becomes the coordination of 
these parallel processes.  

Before we present the SAW agents, we need to model 
SAW for adaptive service coordination, which includes 

Mission Planner (MP)
Mission 

Goal

Execution PlanQuery

Register

Specify     

Directories 
Situation-

Awareness 
Agents (SAA)

Services

Query

Monitor / 
Coordinate

Situations /
Execution Results

Figure 1. SAW agents for adaptive
service coordination 

Context Context 
Instance

has

has

has

has
instance of

Context 
Name

Context 
Type Time 

StampContext 
Value

has

in

Context
Operator

Defined on

Location
Identifier

has

Situation
Operator

Is aIs a

compose
compose

compose

Process

Trigger

in

compose

Argument constant

value of

value of

Composite
Situation

Context Value
Domain

Atomic 
Situation

Situation

(1)

(2)

(3)

Precondition of Change
Prefer

location of

Figure 2. A conceptual view of our model for 
SAW for adaptive service coordination 



  
 

two aspects: (1) modeling situations, and (2) modeling the 
relations between situations and processes.  

Figure 2 shows a conceptual view of our model. Since 
context acquisition and operations on contexts are highly 
domain-specific and often involve low-level system 
processes, our model will not include the ways contexts 
are collected and the semantics of operations on contexts. 
Instead, we assume that each context is collected 
periodically by invoking at least one service in a service-
based system, and that a service that can collect a context 
also implement operations for preprocessing this context.  
Def. 1: A context is a measurable property of the 
environment, the system or users: 
• ci is the unique name of a context  
• τi = contextType(ci),  the context type of ci. 
• Di = domainOf(τi), the value domain of τi.  
Def. 2: A context instance Iix of the context ci is a 
quintuple (ci, τj, vk, tx, lm), where τj = contextType(ci), vk ∈ 
domainOf(τj), tx is a timestamp, and lm is a location 
identifier. Given Iix = (ci, τj, vk, tx, lm), the following two 
functions are defined: valOfIns(ci, tx) = vk, which returns 
the value of a context at a particular time, and locOfIns(ci, 
tx) = lm, which returns where the context is measured. 
Def. 3: An argument arg is one of the following:  
• a constant value in a context value domain Di  
• a variable ranging over a context value domain Di 
• valOfIns(ci, t), in which t is a time variable  
• locOfIns(ci, t), in which t is a time variable 
An arg is bounded if it is a constant, a variable with a 
value vx (∈ Di) assigned to it, or the return value of 
valOfIns(ci, t) or locOfIns(ci, t) at a given time stamp t. 
Def. 4: Given a set of arguments, {arg1, …, argn} ⊆ Di, 
two types of context operators are defined as follows: 
• Boolean operators: opi(arg1, …, argn) = true | false 
• Value operators: opj(arg1, …, argn) = v ∈ Di 
Def. 5: A term is either an application of a context 
operator, op(arg1, …, argn), or a nested application of 
context operators, op(term1 | arg1, …, termn | argn).  
Def. 6: An atomic situation, aSi is a term which returns 
boolean values.  It can be expressed as follows: aSi(x1, …, 
xm) ≡ op(arg1, …, argn) | op(term1 | arg1, …, termn | argn), 
where op is a boolean operator, and x1, …, xm are all 
unbounded arguments of op.  

Def. 7: A composite situation, cSi, is defined as follows: 
1) cSi ≡ aSx; 2) cSi ≡ ¬ cSx | cSx ∧ cSy |  cSx ∨ cSy; 3) cSi ≡ 
P(cSx, ω , ε): cSx was true sometime within [now-ω, now-
ω+ε]; 4) cSi ≡ H(cSx, ω , ε): cSx was always true within 
[now-ω, now-ω+ε]; 5) cSi ≡ Know(cSx, ϕ): The process ϕ  
knows that cSx is true; 6) All composite situations are 
defined by recursively applying (1) – (5). ¬, ∧, ∨, P, H, 
and Know are situation operators. 

Def. 8: Let s0 and s1 be situations, and σ and ϕ processes.  
Five basic relations between situations and processes are 
defined as follows:   
1) precondition(ϕ, s0): s0 must be true when ϕ can be 
executed. 2) do(ϕ, s0, s1): The execution of ϕ makes s1 true 
when s0 is true. 3) trigger(σ, ϕ, s0): When σ knows that s0 
is true, σ triggers ϕ. This relation models the reactive 
behaviors of processes. 4) tell(σ, ϕ, s0): σ sends ϕ the 
information about s0. This relation models the knowledge 
sharing between processes. 5) prefer(s0, σ, ϕ): When s0 is 
true, it is preferable to use σ instead of ϕ. This relation 
models the preferences on the usage of processes.  
Definition 9: A model M for SAW in a service-based 
system is a tuple (C, T, L, S, Φ, R, CH), where C is the set 
of definitions of the contexts in the system, T is the set of 
timestamps appeared in the system since the system started 
to run, L is the set of possible location identifiers in the 
system, S is the set of definitions of the situations in the 
system, Φ is the set of processes in the system, R is the set 
of relations between situations and processes defined in 
the system, and CH is the context history, which consists 
of instances of the contexts in the system. 

M is an abstract model since the actual representation 
of T and L, and the size of CH depends on the system to be 
modeled. 

Our model for SAW in service-based systems has 
strong expressive power because of the following reasons: 

 Based on Defs 4 and 7, our model can capture 
temporal relations among instances of contexts.  

 Based on Def. 8, our model allows service providers 
and developers to define the situations that trigger, 
allow or prohibit the execution of processes in the 
service-based system.  

 Based on Def. 8, our model allows users to express 
their preferences on the usage of services.  

 Using the five basic relations in Def. 8, our model 
allows modeling control structures, which are 
commonly used in service coordination.  

 Our model can be used to express the situation that 
timestamped common knowledge [23], which is very 
important for the coordination of distributed 
processes, is attained among distributed processes.  

The following are the properties of our model M, which 
are useful in developing the SAW agents: 
P1) Given M for SAW in a service-based system, the 

definition of a situation s0, and a timestamp t0 in T, the 
question “Does M satisfy s0 at t0?” is decidable.  

P2) Given M for SAW in a service-based system, and the 
definitions of situations s0 and s1, the question “Does 
s0 implies s1?” is decidable. 

P3) Given M for SAW in a service-based system, the 
definition of a situation s0, and the fact that M has not 
satisfied s0 since the system started to run, the 
question “Is it possible that M will satisfy s0 sometime 



  
 

in the future?” is decidable if the contexts involved in 
the definition of s0 have finite context value domains.  

Based on our model, a formal specification language 
can be derived to specify SAW in service-based systems. 
The specifications will be used by the MP to generate 
suitable execution plans. As a proof-of-concept, we will 
show an example in Section 4 using Transaction F-Logic 
[24] to specify SAW requirements.  

3.2 Design of SAW Agents  

SAW agents are distributed autonomous software 
entities, which should have the following capabilities to 
support situation analysis and service coordination:  
C1) Participant service management. SAW agents 

should be able to accept “join” or “leave” requests 
from participant services, monitor their status, select 
and invoke appropriate services when needed, and 
report their status to other agents or the MP.  

C2) Agent discovery. An SAW agent should advertise its 
existence and allow other agents or MP to query its 
configuration, including participant services managed 
by the agent, and context and situation information 
provided by the agent. This is necessary for the 
cooperation of multiple SAW agents and the MP to 
support situation analysis and service coordination.  

C3) Context acquisition and situation analysis. An 
SAW agent should collect contexts from its 
participant services and analyze situations 
continuously based on its configuration.  

With these capabilities, SAW agents can adaptively 
coordinate services in execution plans as follows:  
(1) In each step of execution, SAW agents check whether 

all the dependencies on situations are satisfied.  
(2) If the dependency on a situation is not satisfied, SAW 

agents will check whether the step can be undone.  
(3) If the step is undoable, SAW agents will first undo the 

step and then search for an alternative service.  
(4) If an alternative service is found, SAW agents will 

resume the execution using the alternative service. 
Otherwise, SAW agents will notify MP to do the re-
planning to find an alternative workflow. 

Multiple SAW agents in a service-based system will 
form a hierarchy to process situation information and 
coordinate workflow execution. In this hierarchy, the 
agents in lower levels often do not have direct interactions 
with users, and perform some simple tasks, such as 
collecting contexts, recognizing atomic situations, or 
controlling the invocation of one or several services. The 
agents in higher levels usually have more interactions with 
users and need to perform more complex tasks, such as 
recognizing composite situations, discovering other agents 
and services for coordinating the workflow execution, and 
adapting workflows. Hence, agents at higher levels need to 
be reconfigured more often than the agents in lower levels. 

Based on this, two types of SAW agents are used in the 
system to achieve a balance between reconfigurability and 
performance:  
(I) SAW agents with internal knowledge bases. An 
SAW agent with an internal knowledge base stores the 
definitions of contexts and situations, and the relations 
between situations and processes in its knowledge base. 
Such an SAW agent performs situation analysis, and 
determines processes to be triggered by reasoning with 
knowledge in its knowledge base. Depending on the 
formal language based on our model, a corresponding 
inference engine can be used to provide reasoning support. 
For example, if we choose Transaction F-Logic to specify 
SAW in a service-based system based on our model, 
Flora-2 [25] can be used.    

This type of SAW agents can be easily reconfigured by 
updating its internal knowledge base, and can support the 
adaptation of workflows. However, such SAW agents are 
heavyweight and it is difficult to maintain consistency of 
the knowledge bases of multiple agents, especially when 
the number of agents is large. Hence, we only use this type 
of SAW agents in higher levels of the hierarchy, where 
only a few high level agents with more frequent 
reconfiguration are expected.  
(II) SAW agents as finite state machines (FSM). In [26], 
agents are modeled as FSMs, and they are used to monitor 
certain variables, change their states based on the update 
values of monitored variables, and output some variables 
monitored by other agents during the transition from one 
state to another.  It can be easily shown that situations 
defined by our model can be detected by FSMs:  
o An atomic situation can be detected by a two-state 

machine as shown in Figure 3.  
o A composite situation can be detected by a more 

complex FSM generated by combining FSMs for 
detecting the atomic situations.  

This type of SAW agents is lightweight, does not 
require maintenance of their internal knowledge bases, and 
can be automatically generated from the model of SAW. 
However, the reconfiguration of such agents is difficult. In 
order to improve the performance of the system, we use 
this type of SAW agents in lower levels of the hierarchy, 
where less reconfiguration is expected. 

There is no clear boundary in the hierarchy of SAW 
agents indicating which types of agents should be used at 
what level. Further investigation is needed to analyze the 

Figure 3. A state machine for detecting an 
atomic situation 

False True

...

...

aS0 is true/false

arg1

argn

op/n is true
op/n is true

op/n is false

op/n is false

A two-state machine M0 for an atomic situation aS0 = op(arg1, ? argn)



  
 

(F1) rescued(passengerShip) rescueShip

        :      [detectSOS(passengerShip,Now)] A B
                                 [lifeThreaten(passengerShip,Now)] B
                

Dependencies GOAL

Depedencies

← ∧ ∧

→ ∨
∧ →

:
                 [withinRange(rescueShip,passengerShip,port, Now)] B.helicop

                         [detectSOS(passengerShip,Now)]  rescueShip.load(passengerShip.passengers)
                    

GOAL
∧ →

→
             [lifeThreaten(passengerShip,Now)] (rescueShip.load(passengerShip.passengers)

                                                             rescueShip.helicop.load(passengerShip.lifeThreat
∨ →

∧
1

new

2

1

en_passengers))
(F2) wf A.moveTo(BS.shipLoc)  (( [lifeThreathen(BS, Now)] A.load(BS.passengers))
                   ([lifeThreaten(BS, Now)] rescueShip))
(F3) wf  wf A
(F4) wf B. moveTo(BS.shipLo

 ← ⊗ ¬ ⊗
∨ ⊗

← ∧ ¬
← c) | ([withinRange(B, BS, P1, Now)] B. helicop.flyTo(BS.shipLoc))

                   B.helicop.load(BS.lifeThreaten_passengers) B.load(BS.passengers)⊗ ⊗
→

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. CTR-S formulas for workflow generation (F1)  
and generated workflows (F2-F4) 

tradeoff between reconfigurability and performance, and 
develop design methods for generating optimal or sub-
optimal designs of service-based systems using SAW 
agents for adaptive service coordination. 

4. An Example 

To illustrate our approach, consider the following “ship 
rescue” example: A passenger ship (BS) with 200 
passengers on board has trouble and may be sinking. There 
are two nearby ports P1 and P2, and each port has a 
hospital. There are two rescue ships, A and B at P1 and P2 
respectively. Both ships have enough capacity to hold 200 
passengers, but only B has a helicopter H on-board. A 
rescue center RC is responsible for coordinating rescue 
operations. Five services are involved in this example: 
• SBS: the service on BS for sending out SOS signal with 

various context data, including the number of life-
threatening injuries. 

• SH: the rescue service which controls the helicopter H 
on B to perform rescue operations.  

• SA: the rescue service which controls A to perform 
rescue operations. 

• SB: the rescue service which controls B to perform 
rescue operations. SB may invoke SH. 

• SRC: the service at the rescue center RC which receives 
information from other services, analyzes the received 
information and plans rescue operations.  
Upon detecting the situation “An SOS signal is detected 

from ship BS”, SRC automatically generates a plan to 
perform necessary rescue operations for BS. At first, there 
is no injury report about the passengers from BS. SRC 
discovers the nearby rescue services (SA and SB), and 
selects SA to perform the rescue mission since A is closer 
to BS. However, after A is on the way to BS, another report 
from BS comes indicating several life-threatening injuries 
caused by an explosion just happened on BS. A is unable 
to reach BS and return to P1 fast enough to save the 
injured passengers. Hence, SRC finds SB and SH to rescue 
the injured passengers on BS. 

We will use Transaction F-Logic to specify the SAW 
requirements in the example. Due to the limited space, 
only parts of the specifications are shown here:  

/* ontology for context classes*/ 
ship[status(t)*=>string, shipLoc(t)*=>location]. 
passengerShip::ship[ life_threaten(t)=>integer,    
                                  passengers=>> passenger, 
                                  lifeThreaten_passsengers=>>passenger]. 
rescueShip::ship[helicop=>helicopter,                                   
                                  load(passengers)=>boolean, …]. 
… … 
/* Rules for situations*/ 
/* BShip is at helicopter’s reachable range*/ 
withinRange(RShip, PShip, Port, Time):- 
 RShip:rescueShip, PShip:passengerShip, 

RShip[helicop→H], H[range→D], 
distance(RShip, PShip, Time, D1),  
distance(PShip, Port, Time, D2),  D1 + D2 < D. 

… … 
/* Facts */ 
BS:passengerShip [status(0)→"Normal", injury(0)→0, 
                               life_threaten(0)→0, … ]. 
… … 
BS:passengerShip [status(68)→"SOS ", injury(68)→38,    
                               life_threaten(68)→5, … ]. 
… … 
 

 Situation-triggered mission planning 
Two SAW agents, a rescue center agent (RC agent) and 

a ship agent were developed to monitor SRC and ships (A, 
B, BS) respectively. Each of them maintains its internal 
knowledge base storing collected contexts. The RC agent 
periodically checks the situation “An SOS signal is 
detected from a passenger ship” by querying 
detectSOS(PShip, Now) from its knowledge base. 
Whenever the result is true, the RC agent will send the 
situation and PShip’s information to the MP to trigger a 
workflow planning process. 

We assume that the MP uses CTR-S for workflow 
planning as shown in Figure 4. The CTR-S formula F1 
states that a rescue ship service (rescueShip) that satisfies 
all dependencies (Dependencies) and the goal (GOAL) 

should be identified and 
scheduled. In this example, 
two rescue ship services (A 
and B) are available.  

F1 is used for workflow 
generation. F2, F3 and F4 are 
the generated workflows. The 
Dependencies in F1 indicates 
that when SOS signal is 
detected, either A or B could 
be used to rescue the passenger 
ship. If there are passengers 
have life threatening juries, B 
should be used. Helicopter on-
board could only be sent out 



  
 

when BS is within H’s reachable range. The GOAL 
indicates that use a rescue ship to load passengers if no life 
threatening injury is detected. Otherwise, use a rescue ship 
with helicopter on-board to load injured passengers. 

F2 shows the initial workflow, in which A needs to 
move to the location of BS first, and load the passengers 
on BS if no passenger has life threatening injury. 
Otherwise, another rescue ship (with helicopter on-board) 
needs to be used.  

 Workflow execution 
Workflow defined by F2 is sent to the ship agent, 

which monitors the two rescue ship services (A and B). 
The ship agent finds A and invokes its moveTo action. At 
the same time, the ship agent periodically queries whether 
there are life threatening injuries detected in BS. 

 Workflow adaptation 
When a ship agent detects that several people have life 

threatening injuries, the ship agent will undo the A’s 
moveTo action and try to adapt the workflow without the 
help of MP by finding an alterative service that can be 
used under current situation and resuming the execution of 
the remaining workflow. F3 will be used by the ship agent 
to find such an alternative service. F4 corresponds to such 
an adapted workflow: B will move to BS. When B gets into 
its H’s reachable range, H will fly to BS and load the life-
threatening passengers. B will load the remaining 
passengers after reaches BS.  If such an alternative service 
cannot be found, the ship agent will notify MP with the 
situation violation, and MP will do re-planning from the 
current situation. 

5. Conclusions and Future Work 

In this paper we have presented an approach to 
incorporating SAW for adaptive coordination in service-
based systems. A model for SAW and the design of SAW 
agents based on the model to enable adaptive coordination 
in service-based systems have been presented. Future work 
in this direction includes incorporation of other QoS, such 
as security and real-time, in the service coordination, and 
development of software tools for SAW agent 
specification, verification, generation and deployment, as 
well as support for agent mobility. 

Acknowledgment  
This work is supported by the DoD/ONR under the 

Multidisciplinary Research Program of the University 
Research Initiative, Contract No. N00014-04-1-0723. 

References 
[1] Web Services Architecture. Available at: http://www. 
w3.org/TR/2004/NOTE-ws-arch-20040211/. 
[2] U.S. Department of Defense Directive (DODD) 8100.1: 
“Global Information Grid (GIG) Overarching Policy,” The 
Pentagon, Washington D.C., 2002.  
[3] S. S. Yau, Y. Wang and F. Karim, “Development of 
Situation-Aware Application Software for Ubiquitous Computing 

Environments”, Proc. 26th IEEE Int'l Computer Software and 
Applications Conf., 2002, pp. 233-238. 
[4] S. S. Yau, et al, “Reconfigurable Context-Sensitive 
Middleware for Pervasive Computing,” IEEE Pervasive 
Computing, vol. 1(3), 2002, pp. 33-40. 
[5] S. Russell, P. Norvig, Artificial Intelligence: A modern 
Approach, 2nd ed., Prentice Hall, 2003. 
[6] S. Card, T. Moran, A. Newell, The Psychology of Human-
Computer Interaction, Lawrence Erlbraum Associates, 1983 
[7] David L. Hall, James Llina, Handbook of Multisensor Data 
Fusion, CRC Press, 2001 
[8] J. McCarthy and P. J. Hayes, “Some Philosophical Problems 
from the Standpoint of Artificial Intelligence”, Machine 
Intelligence 4, 1969, pp. 463-502. 
[9] J. A. Pinto, Temporal Reasoning in the Situation Calculus, 
PhD Thesis, University of Toronto, 1994. 
[10] J. McCarthy., “Situation Calculus with Concurrent Events 
and Narrative”, http://wwwformal.stanford.edu/jmc/narrative/ 
narrative.html, 2000. 
[11] D. Plaisted “A Hierarchical Situation Calculus”, J. 
Computing Research Repository (CoRR), 2003.  
[12] C. J. Matheus, M. M. Kokar, and K. Baclawski, “A Core 
Ontology for Situation Awareness”, Proc. 6th Int’l Conf. on 
Information Fusion, 2003, pp. 545 –552. 
[13] C. J. Matheus, et al, “Constructing RuleML-Based Domain 
Theories on top of OWL Ontologies”, Proc. 2nd Int’l Workshop 
on Rules and Rule Markup Languages for the Semantic Web, 
2003, pp. 81–94.  
[14] Web Services Coordination (WS-Coordination), Available 
at:  http://www-106.ibm.com/developerworks/library/ws-coor/ 
[15] Web Services Coordination Framework (WS-CF), 
http://www.oracle.com/technology/tech/webservices/htdocs/spec/
WS-CF.pdf 
[16] P. Braioneand  G. P. Picco, “On Calculi for Context-Aware 
Coordination”, Proc. 6th Coordination Conf., 2004, pp. 38-54 
[17] G. Cabri, L. Leonardi and F. Zambonelli, “Engineering 
Mobile Agent Applications via Context-Dependent 
Coordination”, IEEE Tran. On Software Engineering, vol. 
28(11), 2002, pp. 1039-1055. 
[18] C. Julien and G. Roman, “Egocentric context-aware 
programming in ad hoc mobile environments”, Proc. 10th Int’l. 
Symp. On the Foundations of Software Eng., 2002, pp. 21-30. 
[19] M. P. Singh, Distributed Scheduling of Workflow 
Computations, Technical Report TR-96-18, North Carolina State 
University, 1996. http://www.csc.ncsu.edu/ faculty/ 
mpsingh/papers/databases/wfscheduling.ps 
[20] P. Doherty, J. Kvarnstrom, “TALplanner: A temporal logic-
based planner”, AI Magazine, vol. 22(3), 2001, pp.95-102. 
[21] H. Davulcu, M. Kifer, I.V. Ramakrishnan, “CTR-S: A Logic 
for Specifying Contracts in Semantic Web Services”, Proc. 13th 
Int’l World Wide Web Conf., 2004, pp.144-153. 
[22] S. S. Yau, et al, "Adaptable Situation-Aware Secure Service 
Based Systems", Proc. 8th IEEE Int'l Symp. on Object-oriented 
Real-time distributed Computing, to appear. 
[23] J. Halpern and Y. Moses, “Knowledge and common 
knowledge in a distributed enviroment,” J. ACM, vol. 37(3), 
1990, pp. 549-587. 
[24] M. Kifer, “Deductive and object-oriented data languages: A 
quest for integration,” Proc. DOOD, 1995, pp. 187-212. 
[25] FLORA-2 website, http://flora.sourceforge.net/ 
[26] R. Bharadwaj, "A Framework for the Formal Analysis of 
Multi-Agent Systems," Proc. Formal Approaches to Multi-Agent 
Systems, 2003. 


